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Abstract: We analyze constraints for embedding local SU(5) F-theory GUTs into con-

sistent compactifications and construct explicit three-generation models based on the ge-

ometry of [1]. The key tool for studying constraints in this problem when there is an

underlying E8 structure is the spectral cover, which encodes all of the symmetries that

fix the allowed couplings in the superpotential, as well as the consistent, supersymmetric

G-fluxes. Imposing phenomenological requirements such as the existence of three gener-

ations, top and bottom Yukawa couplings, good flavor structure and absence of exotics

and of a tree-level µ-term, we derive stringent constraints on the allowed spectral covers.

The resulting spectral covers are in conflict with the neutrino scenarios that have been

studied in local F-theory models unless we allow for the possibility of additional charged

fields, perhaps playing the role of gauge messengers, that do not comprise complete GUT

multiplets. Quite remarkably, the existence of additional incomplete GUT multiplets be-

low the GUT scale is necessary for consistency with gauge coupling ”unification”, as their

effect can precisely cancel that of the internal hypercharge flux, which distorts the gauge

couplings already at MGUT.
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1 Introduction and summary

Over the past year, it has become increasingly clear that F-theory provides a very promising

framework for constructing realistic supersymmetric GUT models in string theory [2, 3].

Studies of local models have identified, among other things, mechanisms capable of produc-

ing doublet-triplet splitting without the usual proton decay problems [4, 5], natural flavor

hierarchies [6], and realistic levels of mixing in the quark [6, 7] and neutrino sectors [8, 9].

Further, F-theory models admit simple implementations of gauge mediation [10, 11] that

come naturally equipped with a mechanism for addressing the µ and µ/Bµ problems [12].

In this paper, we seek to systematically understand some of the basic constraints that arise

when attempting to realize these successes in full F-theory compactifications. We then aim

to construct compact examples that implement as many of these constraints as possible.1

The conditions that we demand of our models do not seem that severe at the outset.

Roughly speaking, they amount to requiring

• GUT-breaking and doublet-triplet splitting via a nontrivial hypercharge flux

• Realization of the MSSM superpotential

• Absence of dangerous dimension 4 proton decay operators

• Absence of a bare µ term

• Some of the requisite structure for getting flavor hierarchies

• No charged exotics

We will clarify what we mean by these conditions in section 3. This list certainly does

not comprise all of the features that a successful model must include, but it seems to be a

reasonable starting point.

1.1 Matter curves and symmetry structure

At first glance, it might seem that these conditions are easy to realize. This is certainly

true in the local picture, wherein one studies the model only in certain patches on the

4-cycle, SGUT, on which the GUT degrees of freedom are localized. There, superpotential

couplings are completely determined by the intersection properties of matter curves, over

which we have significant control. Forbidding dimension 4 proton decay operators, for

instance, seems pretty easy since we just need to prevent the corresponding matter curves

from intersecting in the wrong way.

Already when one tries to obtain several different couplings from a single point of

enhanced symmetry, such as the E8 points of [8, 9], the situation becomes somewhat more

subtle. When a large number of matter curves come together, SU(5) invariance is not

enough to determine which couplings are generated. Rather, the superpotential depends

on how each individual multiplet embeds into the adjoint of E8. More specifically, each

1Compact models from uplifts of IIB orientifolds have been discussed in [13].

– 2 –
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matter multiplet is distinguished by its charges under the U(1)4 Cartan subalgebra of the

SU(5)⊥, the commutant of SU(5) inside E8. The allowed couplings, then, are precisely

those that are invariant under this U(1)4.

When one moves to the ”semi-local” picture of [14], where one studies ALE fibrations

over not just isolated patches but rather the full SGUT, this subtlety is, in a sense, extended

over the entire surface SGUT. This happens partly because the notion of ”distinct” matter

curves depends on how the corresponding GUT multiplets are embedded into the adjoint of

E8. When two seemingly different matter curves intersect at a point that does not further

increase the rank of the singularity, their wave functions become connected by a nontrivial

boundary condition [15]. From the perspective of these wave functions, one should not

think of the two curves as distinct but rather as a single curve that happens to ”pinch”

at a point. Zero modes are counted as though the two comprise a single curve and wave

functions are expected to spread over both components. The connection to E8 group theory

arises by noting that the matter curves of charged fields that embed differently into the E8

adjoint are guaranteed to yield enhancements in rank when they intersect, thereby making

them truly distinct.

Geometrically, the 4 U(1) factors that distinguish different types of matter curves

and control the superpotential arise from 2-cycles that are resolved as the E8 singularity

is unfolded. In a generic coordinate patch, these factors are all distinct but when the

patches are glued together to form the full 4-cycle SGUT, they typically undergo a series of

monodromies. This forces us to quotient the theory by the monodromy group, G, which will

be a subgroup of the Weyl group of E8 that leaves the SU(5) roots invariant. The quotient

removes the distinction between some of the matter curves and gives rise to an intricate

symmetry structure in the resulting superpotential that can not always be understood in

terms of residual global symmetries alone. A useful object for studying the monodromy

groupG is a familiar one from heterotic model-building, namely the so-called spectral cover.

The importance of the spectral cover for F-theory models that do not necessarily admit

heterotic duals has been emphasized in several publications in the past year [5, 14–16].

1.2 Constraints and compact examples

In the first part of this paper, we will study our basic list of constraints in this ”semi-local”

framework. Perhaps surprisingly, we will find that only three choices for the monodromy

group, G, are consistent with all of them and, in each case, the embeddings of MSSM

matter multiplets into E8 are essentially fixed. All of these scenarios have exactly one

anomalous U(1) gauge symmetry that survives the quotient and it is fixed in each case to

be a combination of U(1)B−L and U(1)Y . An accidental global U(1)PQ symmetry under

which Hu andHd carry identical charge arises at the level of the renormalizable Lagrangian,

but can be generically broken by nonrenormalizable operators that originate from physics

at or above the GUT scale.

After identifying this limited class of scenarios, we next turn to their realization in full

F-theory compactifications. As a warm-up, we drop the µ term constraint as this leads to

significant simplifications. We then describe two different constructions of G-fluxes in the

”semi-local” picture that are capable of engineering three generations of chiral matter. We

– 3 –
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are able to realize one of these in an F-theory compactification on an elliptically fibered

Calabi-Yau four-fold whose base manifold is the one constructed in [1]. This leads to a

3-generation compact F-theory GUT that realizes all of the constraints enumerated above

except for the absence of a bare µ term. We describe in general how one can extend the

symmetry structure to incorporate this constraint as well. Carrying this out in explicit

examples seems daunting, but we see no obvious obstructions.

So, in the end we are able to construct a relatively simple example of a compact F-

theory GUT model with three generations of chiral matter, the MSSM superpotential, a

viable mechanism for GUT-breaking, and the absence of problems associated with proton

decay. The limitations of this model, however, go beyond the fact that it exhibits a µ

problem. For instance, while we realize some of the necessary conditions for getting flavor

hierarchies, we do not realize all of them. Doing so will require, at the very least, a further

tuning that we do not investigate here.

1.3 Evading the constraints

More troubling, however, is that the limited class of scenarios that satisfy our general

constraints seem to generically have problems with neutrino physics. This is due to the

presence of an exact (perturbative) U(1)B−L and the lack of an exact U(1)PQ symmetry

with respect to which Hu and Hd have the same charge and may be an indication that the

constraints we impose are too restrictive.

The most significant of all these constraints, and the only one that it seems reasonable

to relax, is the precise manner by which we ensure that all exotics are removed from the

spectrum. In particular, we require that the only light degrees of freedom are precisely the

ones needed for the MSSM with nothing more. This is already a bit too restrictive because

gauge mediated models [10, 11] suggest that we should incorporate vector-like pairs of

messenger fields, f and f , which couple to an MSSM singlet, X, responsible for breaking

supersymmetry via the coupling

Xff . (1.1)

In the E8 scenarios of [8, 9], for instance, the fields f and f transform in the 10 and 10

of SU(5). As we describe in section 3, however, to avoid the restricted class of spectral

covers described in this paper we need something a bit more radical: we need to allow a

messenger sector in which f and f which do not comprise complete GUT multiplets.

One might think that this is a problem for unification but, quite interestingly, F-

theory GUTs have a complimentary puzzle as well. As pointed out in [17], the internal

hypercharge flux used to break the SU(5) gauge group already disrupts unification at the

scale MGUT. This opens up a new puzzle, namely why experimental data indicates that

the gauge couplings seem to unify while, in this class of models, they actually fail to do

so. In section 3, we will note that the incomplete GUT multiplets needed to avoid our

constraints are of precisely the right form to effectively ”cancel” the effects of this internal

hypercharge flux. To be sure, getting favorable neutrino physics forces us to introduce new

degrees of freedom of just the right type to address the unification problem in F-theory

– 4 –
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GUTs. We will have more to say about this in future work [18], where we hope to construct

compact models of this type.

1.4 Outline

The outline of this paper is as follows. In section 2, we review the basic structure of ellipti-

cally fibered Calabi-Yau four-folds with resolved E8 singularities as well as the symmetries

that constrain the superpotential in such models. We describe the origin of monodromies

and review the spectral cover construction that is useful for studying them. In section 3,

we discuss the specific constraints that we impose throughout our model-building efforts

and demonstrate that a very limited number of scenarios can satisfy all of them. We also

comment on how to avoid these constraints by introducing a messenger sector comprised of

incomplete GUT multiplets. We study generic features of models that can realize most of

our constraints in section 4 before proceeding to construct explicit 3-generation GUTs in

section 5. Finally, in section 6 we comment on conditions that must be satisfied to address

the µ problem in our compactifications. Several computational details, as well as a brief

review of the three-fold constructed in [1] that serves as a base of our compact elliptically

fibered Calabi-Yau four-folds, are deferred to the appendices.

2 Four-folds, monodromies, and fluxes

In this section, we review the generic structure of Calabi-Yau four-folds with resolved E8

singularities and the effective 4-dimensional field theories that they engineer. In the first

two subsections, we recall basic aspects of the geometry and proceed to discuss the origin of

various symmetries that constrain the 4-dimensional superpotential. After that, we review

the construction of well-defined G-fluxes necessary for engineering chiral matter.

2.1 Structure of four-folds

We begin by reviewing the structure of local Calabi-Yau four-folds for SU(5) GUTs. We

consider elliptically fibered Calabi-Yau four-folds, with base three-fold B3. For most of this

paper, we focus our attention on four-folds which take the form of a local ALE fibration

over a four-cycle, SGUT, over which the fiber degenerates to an SU(5) singularity. Charged

matter fields and Yukawa couplings originate from curves and points where the singularity

type enhances in rank. Eventually we will also consider the embedding of such local four-

folds into honest compact ones.

Our starting point is the Weierstrass model

y2 = x3 + fx+ g , (2.1)

where f and g are holomorphic sections of (NSGUT/B3
⊗K−1

SGUT
)4 and (NSGUT/B3

⊗K−1
SGUT

)6,

respectively. Here, NSGUT/B3
and KSGUT

denote the normal bundle of SGUT in B3 and the

canonical bundle of SGUT, respectively.

The surface SGUT on which we seek to realize the SU(5) gauge degrees of freedom is

a holomorphic divisor inside B3. As such, it is specified by the vanishing of a holomorphic

– 5 –
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Figure 1. Extended E8 Dynkin diagram.

section, z, which provides for us a local coordinate for the ”normal” direction to SGUT.

Expanding f and g in the section z while requiring an SU(5) singularity along z = 0 as

in [19], the Weierstrass model can be put into the form of a generic deformation of an E8

singularity to SU(5) [1, 14, 19]

y2 = x3 + b5xy + b4x
2z + b3yz

2 + b2xz
3 + b0z

5 , (2.2)

where x, y, and the bm are holomorphic sections of suitable bundles over SGUT. We will

use standard notation in which c1 stands for the first Chern class of the tangent bundle to

SGUT and −t for the first Chern class of the normal bundle of SGUT inside the base B3.

With this notation, the objects appearing here are sections of line bundles as denoted in

the following table

Section c1 (Bundle)

y 3(c1 − t)

x 2(c1 − t)

z −t

bm η −mc1

(2.3)

where

η = 6c1 − t. (2.4)

2.1.1 Origin of charged matter and Yukawa couplings

Let us take a moment to review the origin of charged matter and Yukawa couplings in

geometries of this type. A full E8 singularity exhibits 8 collapsed P
1’s whose intersection

matrix is given by −1 times the E8 Cartan matrix. This provides a natural identification

of geometric parameters, namely the volumes of the 8 P
1’s, with the simple roots of E8

associated to nodes of the corresponding Dynkin diagram. In figure 1, we depict the

extended E8 Dynkin diagram which, in addition to the 8 nodes α1, . . . , α8, includes also

the node α−θ

α−θ = −2α1 − 3α2 − 4α3 − 5α4 − 6α5 − 4α6 − 2α7 − 3α8 . (2.5)

An E8 singularity over SGUT engineers an 8-dimensional E8 gauge theory on R
3,1 ×

SGUT. Resolving the singularity by introducing nonzero volumes for some of the αi corre-

sponds to turning on a nontrivial expectation value for the adjoint scalar field of this theory,

– 6 –
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φadj, that breaks E8 to a subgroup. We will be interested in SU(5) models so we will take

〈φadj〉 to lie in the Cartan subalgebra of the SU(5)⊥ commutant of SU(5) inside E8.

At generic points, 〈φadj〉 will be such that it completely breaks E8 → SU(5) × U(1)4.

Further, this expectation value gives a nonzero mass to several components of the E8

adjoint chiral multiplet through the coupling

[〈φadj〉, δφadj]
2 . (2.6)

For typical 〈φadj〉, only the SU(5) adjoint and some SU(5) singlets remain. An easy way to

motivate the relation between masses of the other residual SU(5) multiplets and geometric

volumes of P
1’s is to recall the decomposition of the E8 adjoint under E8 → SU(5)×SU(5)⊥

248 → (24,1) ⊕ (1,24) ⊕ (10,5) ⊕ (5,10) ⊕ (10,5) ⊕ (5,10) . (2.7)

We see from this that multiplets transforming in the 10 of SU(5) obtain masses from (2.6)

that correspond to the weights λi of the fundamental 5⊥ of SU(5)⊥. These weights are

related to the roots αi, and hence the volumes of our P
1’s, by the standard relations

λ1 = α4

λ2 = α3 + α4

λ3 = α2 + α3 + α4

λ4 = α1 + α2 + α3 + α4

λ5 = α−θ + α1 + α2 + α3 + α4 .

(2.8)

In general, then, the curves along which 10 and 5 matter fields localize are determined by

Σ10 ∼ λi = 0 , Σ5 ∼ λj + λk = 0, j 6= k . (2.9)

Note that we abuse notation a bit in letting the λi refer both to weights of a given SU(5)

multiplet under U(1)4 ⊂ SU(5)⊥ as well as the position-dependent masses whose vanishing

specifies the matter curve on which that multiplet localizes.

Superpotential couplings involving these fields descend from the cubic (248)3 term

of the underlying E8 gauge theory. After the breaking E8 → SU(5) × U(1)4, then, we

expect to find all cubic couplings that are allowed by the SU(5) × U(1)4 symmetry. The

specific locus on which a field localizes, though uniquely determines its U(1)4 charge. For

instance, a 10 associated to the curve λ1 = 0 carries charge +1 with respect to the first

U(1) factor and 0 under the rest. Similarly, 5 associated to the curve λ1 + λ2 = 0 carries

charge +1 with respect to the first two U(1) factors and 0 under the rest. A set of fields

that can participate in up-type 10 × 10 × 5 Yukawas, then, must be associated to fields

that localize on curves with (λi = 0), (λj = 0), and (λi + λj = 0) for some i 6= j. The

dominant contribution to such couplings will arise at the points λi = λj = 0 where these

curves meet. For this reason, we associate up-type Yukawas with the points

10M × 10M × 5H when λi = λj = λi + λj = 0 i 6= j . (2.10)

Similarly, we get down-type Yukawas from points where

10M × 5M × 5H when λi + λj = λk + λℓ = λm = 0 ǫijkℓm 6= 0 . (2.11)

– 7 –
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2.1.2 Matter curves and couplings in the four-fold

In the four-fold, (2.2), one does not directly specify the volumes λi but rather the objects

bn, to which they are related by [14]

bn ∼ b0en(λi) , (2.12)

where en(λi) are the degree 5 elementary symmetric polynomials defined by

5
∏

i=1

(x+ λi) =
5

∑

n=0

x5−nen(λi) . (2.13)

The absence of a b1 term in (2.2) reflects the fact that e1(λi) ∼
∑

i λi = 0. In terms of the

bn, the condition defining the 10 matter curve, namly λi = 0 for some i, can be written as

Σ10 : 0 = b5 =
5

∏

i=1

λi . (2.14)

It is easy to see from (2.2) that this corresponds to an enhancement of the singularity type

from SU(5) to SO(10). On the other hand, the condition λi + λj = 0 for some i 6= j can

be written as

Σ5 : 0 =
∏

i<j

(λi+λj) = b1b2b3b4−b1b
2
2b5−b

2
1b

2
4+2b0b1b4b5+b0(b2b3b5−b

2
3b4−b0b

2
5) . (2.15)

This means that, when b1 = 0, 5 matter is localized along the curve given by

P ≡ b0b
2
5 − b2b3b5 + b23b4 = 0 . (2.16)

It is easy to verify from (2.2) that this corresponds to an enhancement of the singularity

type from SU(5) to SU(6).

Turning now to superpotential couplings, the condition associated to up-type Yukawas,

λi = λj = λi + λj = 0 for some i 6= j, corresponds to

10 × 10 × 5 : b3 = b5 = 0 (2.17)

This describes an E6 enhancement of the singularity in (2.2). Similarly, the condition for

down-type Yukawas, λi + λj = λk + λℓ = λm = 0 for i, j, k, ℓ,m all distinct, is simply

10 × 5× 5 : b4 = b5 = 0 (2.18)

This describes an SO(12) enhancement of the singularity in (2.2).

2.2 Monodromies and symmetries

As described in the previous section, Yukawa couplings originate from the standard 248×

248 × 248 cubic coupling of the underlying E8 theory. Because the breaking E8 → SU(5)

reduces the rank of the gauge group by 4, one naively expects an additional 4 U(1) gauge

symmetries to remain and constrain the form of the superpotential. Generically, however,

– 8 –
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this is not the case. As we saw, the data of the four-fold does not specify distinct volumes,

λi, but rather sections, bn, to which the λi are related by

bn ∼ en(λi) . (2.19)

In general, if we try to invert these equations to obtain λi(bn), the corresponding solutions

will exhibit branch cuts. The individual λi(bn) can only be defined locally and are subject

to the action of a nontrivial monodromy group, G, that is a subgroup of the Weyl group

WA4
∼= S5 of SU(5)⊥.

The nature of the monodromy group G has important implications both for the dy-

namical (but possibly anomalous) gauge symmetries that remain as well as the structure

of the superpotential. It played a crucial role in local studies of neutrino scenarios in [8, 9]

and also has implications for the types of fluxes that can be introduced for realizing three

generation models [14].

2.2.1 The spectral surface, C10

While all of the data of the monodromy group is contained in the bm, it is often useful

to introduce an auxiliary object, the fundamental spectral surface C10, to describe it. A

convenient realization of this surface was given in [14] as a submanifold of the projective

three-fold

X = P(OSGUT
⊕KSGUT

) , (2.20)

defined by the equation

FC10
= b0U

5 + b2V
2U3 + b3V

3U2 + b4V
4U + b5V

5 = 0 . (2.21)

Here OSGUT
and KSGUT

are the trivial and canonical bundle on SGUT, respectively. The

homogeneous coordiantes [U, V ] on the P
1 fiber are sections of O(1) ⊗ KSGUT

and O(1),

respectively, where O(1) is the line bundle of degree 1 on P
1.

It will also be convenient to define the projection

π : X → SGUT (2.22)

along with the map, pC10 , that it induces

pC10 : C10 → SGUT . (2.23)

The object FC10
is a projectivization of the equation

0 = b0s
5 + b2s

3 + b3s
2 + b4s+ b5 ∼ b0

5
∏

i=1

(s+ λi) , (2.24)

whose roots, as indicated, are essentially the λi. In any local patch, the sheets of C10

provide a solution λi(bn) while the monodromy group, G, is encoded by the topology of

the full surface.
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2.2.2 Monodromies and the factorization of C10

The most immediate characteristic of C10 is the number of components into which it factors.

This carries significant information aboutG because it describes the orbits of the {λi} under

its action. There are several possibilities, which we now describe.

• Case 1: C10 does not factor

If C10 does not factor then G is a transitive subgroup of S5. Up to conjugacy, there

are only four proper transitive subgroups of S5. These include the alternating group

of even permutations, A5, the cyclic group of order 5, Z5, the dihedral group, D5,

and a group of order 20 generated by (12345) and (2354).

• Case 2: C10 = C
(1)
10

+ C
(4)
10

If C10 splits into a linear and a quartic piece then the monodromy group is a transitive

subgroup of S4. The only proper transitive subgroups of S4 are

A4,D4,Z4, V (2.25)

where A4 is the alternating group of even permutations, D4 is a dihedral group, Z4

is the cyclic group of order 4, and V ∼= Z2 × Z2 is the Klein four group generated by

even permutations of order 2

V = {1, (12)(34), (13)(24), (14)(23)} . (2.26)

• Case 3: C10 = C
(3)
10

+ . . .

If C10 contains a cubic piece then the monodromy group is a transitive subgroup

of either S3 × S2 or S3, depending on whether or not the remaining degree 2 piece

factors. Note that S2 has no nontrivial proper subgroups while the only proper

transitive subgroup of S3 is A3
∼= Z3. The monodromy group in this case is either

S3 × S2, A3 × S2, S3, or A3.

• Case 4: C10 =
∑

i C
(mi)
10

for mi ≤ 2

If C10 splits into only linear and quadratic factors then G is completely determined

as a product of the relevant Z2’s.

As we shall see below, the specific monodromy group G in a given case is often crucial

in determining the structure of the superpotential.

2.2.3 Matter curves in C10

An important observation of [15] is that when two matter curves meet without a further

enhancement in the singularity type of the fiber, their wave functions are not independent

but instead are connected by a nontrivial boundary condition at the intersection point.

This happens because the SU(5) multiplets on the two curves locally exhibit an identical

embedding into E8, meaning that they arise from a single wave function on SGUT that
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happens to localize on both pieces. When counting zero modes, it is more appropriate to

think of such naively independent matter curves as a single one that happens to ”pinch”

at one or more points. Even though the different pieces that remain after this ”pinching”

are topologically split, the wave functions see them as a single object so we will always

treat them as such. In particular, we will always use the term matter curve to refer only

to the entire (possibly reducible) curve on which a given (SU(5) × U(1)4)/G multiplet is

localized.2

For trivial monodromy group, we would expect at most 5 independent 10 matter

curves, corresponding to the five copies of the 10 inside the E8 adjoint and defined by the

five equations λi = 0. When various λi are mixed by monodromies, however, the number

of independent matter curves decreases. A useful way to keep track of this is by visualizing

the 10 matter curves directly inside the spectral surface C10. This is done by noting that

a 10 matter curve corresponds to the intersection of any sheet s ∼ λi with zero so that,

inside X, it is given by the intersection

Σ10 ∼ (U = 0) ∩ C10 (2.27)

Two curves whose SU(5) multiplets are related by monodromies will lie in a common

component of C10. On the other hand, two curves whose SU(5) multiplets are not related

by monodromies will lie in different components of C10.

For 5 matter fields, the situation is slightly more tricky. Often one introduces another

surface, C
5
, by projectivizing [14]

∏

i<j

(s+ λi + λj) ∼ b30
[

s10 + 3s8c2 − s7c3 + 3s6(c22 − c4)

+s5(−2c2c3 + 11c5) + s4(c32 − c23 − 2c2c4)

+s3(−c22c3 + 4c3c4 + 4c2c5) + s2(−c2c
2
3 + c22c4 − 4c24 + 7c3c5)

+s(c33c
2
2c5 − 4c4c5) + (c2c3c5 − c23c4 − c25)

]

. (2.28)

where cm = bm/b0. In that case, the net 5 matter curve is simply described as the inter-

section of s = 0 with C
5
. Different pieces of this curve correspond to truly distinct matter

curves precisely when they lie in different components of C
5
. It is often useful, however, to

visualize the 5 matter curves directly in C10. This allows us to associate them with specific

sheets of C10, helping us to identify the local ”charges” of both 10’s and 5’s under the

U(1)4 Cartan of SU(5)⊥ at the same time.

To obtain a prescription for picking out the 5 matter curve inside C10, we follow the

heterotic literature (see for instance [20–22]) and define an involution τ : X → X by

sending V → −V , which inverts the sheets of C10 according to λi → −λi. The fixed locus

of C10 under this involution consists of three components

• λi = 0

2In some special cases, the matter curve associated with a single multiplet might split into pieces in such

way that one piece, Σ̃, fails to intersect all of the others. In that case, one should be able to distinguish

zero modes on Σ̃ and zero modes on the rest. This situation is somewhat nongeneric so we will not consider

it in this paper.
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• λi + λj = 0

• λi → ∞

The first component is the 10 matter curve while the third is the intersection (of appropriate

multiplicity) of C10 with the ”divisor at infinity” along V = 0. In the heterotic literature,

where spectral surfaces play a crucial role, this component is variously referred to as CV ∩σ2

in [20] or C ∩ σt in [21]. The third component is precisely our desired 5 matter curve.

2.2.4 Imprint of G on the superpotential

The most obvious impact of G on the form of the superpotential is in the collection of U(1)

gauge symmetries that remain after we perform the quotient. Typically, of the four U(1)

gauge symmetries that arise when E8 is broken to SU(5), all of them are projected out by

the monodromy group action. To see this, recall that the gauge boson associated to such a

symmetry corresponds to an element of the Cartan subalgebra, and thus to the dual space

to the λi, which can be written as a linear combination

∑

i

ciλ
∗
i , (2.29)

where λ∗i (λj) = δij . The only linear combination of λi that is invariant under the generic

monodromy group, S5, is
∑

i λi, namely the one linear combination that vanishes identi-

cally. In fact, the same is true for any subgroup of S5 that acts transitively on the λi. In

order to preserve a dynamical U(1) gauge symmetry, then, it is necessary for the set of

sheets, {λi}, to comprise a reducible representation of G. In terms of the spectral surface,

this is equivalent to the statement that C10 factors into distinct components. The mon-

dromy group G in such a situation is contained within the suitable product of symmetric

groups and the number of surviving U(1) gauge symmetries is N−1, where N is the number

of components of C10.

Sometimes, however, these U(1) symmetries alone are not sufficient to understand all

of the structure that is inherited from the underlying E8 ”parent” theory. Consider, for

instance, a situation in which G = Z4 generated by the element (1234) acting on the λi

with i = 1, . . . , 4. In this case, there are two 10 and three 5 matter curves, obtained by

decomposing the λi and λi + λj into orbits of G, as

10(1) = {λ1, λ2, λ3, λ4}

10(2) = {λ5}

5
(1)

∼ {λ1 + λ2, λ2 + λ3, λ3 + λ4, λ4 + λ1}

5
(2)

= {λ1 + λ3, λ2 + λ4}

5
(3)

= {λ1 + λ5, λ2 + λ5, λ3 + λ5, λ4 + λ5} .

(2.30)

All superpotential couplings must not only be SU(5) invariant but must also descend from

couplings that are invariant under the U(1)4 left over in the decomposition E8 → SU(5)×
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U(1)4 before we quotient by G. More specifically, 10 × 10 × 5 and 10 × 5 × 5 couplings

arise from points of E6 and SO(12) enhancement, respectively, which are described by

E6 : λi = λj = λi + λj = 0 , i 6= j

SO(12) : λi = λj + λk = λℓ + λm = 0 , ǫijklm 6= 0 .
(2.31)

This means that the several couplings are allowed, including

10(1) ×10(1) ×5(1), 10(1) ×10(1) ×5(2), 10(2) ×5
(1)

×5
(1)
, 10(2) ×5

(2)
×5

(2)
(2.32)

but the following is forbidden

10(2) × 5
(1)

× 5
(2)
. (2.33)

There is no symmetry in the ”daughter” theory after the quotient that can forbid (2.33)

while allowing all of the couplings in (2.32). The fact that (2.33) is forbidden is a reflection

of the monodromy group and an indication that simply knowing the number of components

of C10 is not enough to determine the structure of the theory.

So, when do we have to worry about U(1)’s not being sufficient? In general, to classify

all possible Yukawa couplings involving 10’s and 5’s (and their conjugates), it is necessary

to determine the decomposition of {λi} and {λi + λj} into orbits under the action of G.

The former can be obtained from knowledge of the components of C10. Likewise, the

latter can be determined from the number of components into which C
5

splits. From the

classification of section 2.2.2, however, the monodromy group is completely specified when

C10 contains only linear and quadratic factors. Further, when C10 contains a cubic factor

the only ambiguity is whether the group associated to that factor is S3 or A3. Note,

however, that A3 acts transitively on the set {λa + λb} for a, b = 1, 2, 3. For purposes of

determining superpotential couplings involving 10’s and 5’s, then, the S3 and A3 cases are

indistinguishible.3 As such, we see that if C10 contains no components of degree 4 or 5 then

all couplings are allowed except those that are expressly forbidden by residual U(1) gauge

symmetries.

2.3 G-fluxes from spectral cover

In addition to specifying a four-fold, we must describe the various G-fluxes that are turned

on. Because we do not address moduli stabilization in this paper, we will focus attention

only on those G-fluxes that are relevant for determining the spectrum of charged matter.

To see which ones we need recall that, from the M-theory viewpoint, the charged fields on

matter curves correspond to M2 branes wrapping the 2-cycles that degenerate there. The

G-fluxes to which these M2 branes couple are of the form

G = ωi ∧ Fi , (2.34)

where ωi are harmonic (1,1) forms satisfying
∫

λj

ωi = δij . (2.35)

3If we are interested in couplings involving singlet fields, though, the two cases would lead to different

structures.
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A G-flux of the form (2.34), therefore, can be interpreted as a flux Fi in the U(1) subgroup

of E8 corresponding to ωi.

To describe the G-fluxes that we can turn on, then, it is important to choose a basis for

the ωi or, equivalently, a basis for the 2-cycles that degenerate on various matter curves.

A natural choice is provided by the 5 λi’s, which satisfy one nontrivial relation
∑

i

λi = 0 . (2.36)

Of course, it is necessary to properly account for the monodromy structure captured

by C10. According to the discussion of [14], the proper way to do this is derive F from a

well-defined line bundle, L, on C10 that satisfies

0 = c1(pC10∗L) = pC10∗c1(L) −
1

2
pC10∗r , (2.37)

where r is the ramification divisor

r = p∗C10
c1(SGUT) − c1(C10) . (2.38)

It is natural to decompose c1(L) as

c1(L) =
1

2
r + γ , (2.39)

where γ satisfies

pC10∗γ = 0 . (2.40)

Our desired flux F is nothing other than this object γ, which must be quantized in such a

way that it is consistent with L being an integer line bundle.

For generic b0, . . . , b5, there is only one independent class γu, the so-called universal

class. Below we review how to identify matter curves and determine the chiral spectrum

that arises from γu [14]. In section 4 we will discuss the chiral spectrum from certain

non-universal fluxes in a non-generic situation in which the spectral surface decomposes

into linear and quartic surfaces, C10 = C
(1)
10 + C

(4)
10 .

2.3.1 Matter curves

To determine the chiral spectrum induced by a given G-flux, it is necessary to integrate γ

over matter curves in C10. This requires a more specific analysis of the structure of matter

curves in C10, which we review in this section.

First, however, let us make a few remarks about divisors in the ambient projective

bundle X into which C10 is embedded. Recall that

X = P(OSGUT
⊕KSGUT

) . (2.41)

The divisor U = 0 corresponds to the zero section, σ, which is the class of SGUT inH4(X,Z).

On the other hand, V = 0 corresponds to the ”divisor at infinity”, which we shall denote

by σ∞. Using (2.3) and (2.4), this implies that

σ∞ = σ + c1 , (2.42)
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and that the net class of C10 inside X is simply

[C10] = 5σ + π∗η . (2.43)

Further, because the intersection of U = 0 with V = 0 is empty, we have that σ · σ∞ = 0

or, equivalently, that

σ2 = −σ · c1 . (2.44)

Let us now turn to the matter curves. Recall from the discussion of section 2.2.3 that

both the 10 and 5 matter curves are contained in the fixed locus of C10 under λi → −λi

and hence under the involution

τ : V → −V . (2.45)

Using the fact that [τC10] = [C10], we can determine the homological class of this intersection

inside X from

C10 · C10 = 25σ2 + 10σ · π∗η + (π∗η)2 . (2.46)

At the moment, however, this is not very useful for us. Let us instead try to compute this

intersection directly from (2.21). This intersection corresponds to simultaneous solutions

to the two equations

0 = V 3
(

b3U
2 + b5V

2
)

0 = U
(

b0U
4 + b2U

2V 2 + b4V
4
)

.
(2.47)

There are two obvious components of interest. The first is U = 0, which appears as a

single root of the second equation of (2.47). The intersection of U = 0 with FC10 is in the

class

C10 ∩ σ . (2.48)

This is the class of the 10 matter curve, Σ10, inside C10 as it corresponds to the locus

U = 0 = b5.

The second component of interest is V = 0, which appears as a triple root of the first

equation of (2.47). This is the intersection of C10 with the ”divisor at infinity” and occurs

with a three-fold degeneracy. The class of this intersection is

C10 ∩ 3σ∞ = C10 ∩ 3 (σ + π∗c1) . (2.49)

This corresponds to the λi → ∞ locus of section 2.2.3 that we are instructed to discard.

What remains, now, is the intersection

(C10 − U) ∩ (C10 − 3V ) = C10 ∩ (C10 − U − 3V ) . (2.50)

The l.h.s. here represents the precise intersection as what we have left are simultaneous

solutions to

0 = b3U
2 + b5V

2

0 = b0U
4 + b2U

2V 2 + b4V
4 .

(2.51)
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However, we have used the fact that U ∩V = 0 to rewrite it as the intersection of a divisor

in X with C10. In particular, we note that

C10 − U − 3V = σ + π∗(η − 3c1) . (2.52)

This will be useful later. For now, let us note that this component is the class of the matter

curve inside C10 on which the 5 matter fields are localized. To see that it projects to the

curve P = 0 (2.16) inside SGUT, let us try to solve (2.51). If we suppose that b3 6= 0 then

the first equation gives us

U = ±i

√

b5
b3
V . (2.53)

Plugging into the second equation yields

V 4

b23
P = 0 , P ≡ b0b

2
5 − b2b3b5 + b23b4 . (2.54)

This is a two-sheeted cover of the 5 matter curve inside SGUT. We must also include the

”points at infinity” where b3 = V = 0. Because these points are in C10, they necessarily

have b0 = 0 so that they lie above the locus b3 = b0 = 0 in SGUT.

Homologically, we compute

C10 ∩ (C10 − U − 3V ) = 2 × σ · π∗ (3η − 10c1) + π∗η · π∗ (η − 3c1) . (2.55)

We recognize 3η − 10c1 as the class of P = 0 inside SGUT. The remaining term is a

homological ”correction” that accounts for the ”points at infinity”.

We can summarize these results in the following table

Component Class

10 Matter Curve C10 ∩ σ

5 Matter Curve C10 ∩ (σ + π∗η − 3π∗c1)

Intersection at infinity C10 ∩ 3σ∞

(2.56)

2.3.2 Chiral spectrum from universal flux

The available fluxes are the traceless ones. That is, they correspond to curves γ inside C10

which satisfy

pC10 ∗γ = 0 . (2.57)

The ”universal” γ is given by

γu = 5[Σ10]C10 − p∗C10
pC10 ∗[Σ10]C10 , (2.58)

where we have indicated that Σ10 is to be thought of as a class in C10. More precisely,

from (2.56) we see that [Σ10]C10 is simply

[Σ10]C10 = C10 ∩ σ , (2.59)
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where the intersection is in X. The pushforward, pC ∗[Σ10]C10 , is simply the class of Σ10

inside SGUT, namely η − 5c1. This means that

γu = C10 ∩ (5σ − π∗η + 5π∗c1) = C10 ∩ (5σ∞ − π∗η) . (2.60)

Now, the net chirality on the 10 matter curve is obtained by intersecting γu with [Σ10]C10 =

C10 ∩ σ inside C10. This is simply

n10 − n
10

= C10 ∩ (5σ − π∗η + 5π∗c1) ∩ σ

= C10 ∩ (5σ∞ − π∗η) ∩ σ

= −π∗η ∩ C10 ∩ σ

= −η ·SGUT
(η − 5c1) .

(2.61)

The net chirality of 5’s is also easy to obtain. In particular, we want to compute the

intersection of γ with the restriction of σ + π∗η − 3π∗c1 to C10. Written as an intersection

in C10, this is

γ ·C10 (σ|C10 + p∗Cη − 3p∗Cc1) . (2.62)

We wrote everything this way to explicitly demonstrate the well-known fact that the net

chirality of 5’s always agrees with that of the 10’s. This follows because any γ satisfying

the traceless condition (2.57) also satisfies

γ ·C10 p
∗
Cα = 0 , ∀α ∈ H2(SGUT,Z) . (2.63)

This means that the net chirality of 5’s is simply the intersection of γ with σ|C10 . This

is the same result that we obtained for the 10’s. Note that this argument is sufficiently

general that it will clearly hold in less generic situations when C10 factors. We will make

significant use of this fact later.

It is also instructive to perform this computation for the universal γ by

directly evaluating

C10 ∩ (C10 − U − 3V ) ∩ (5σ − π∗η + 5π∗c1) (2.64)

= [σ · π∗(3η − 10c1) + η ·SGUT
(η − 3c1)F ] · (5σ − π∗η + 5π∗c1)

= −σ · π∗η · π∗(3η − 10c1) + 2η ·SGUT
(η − 3c1)

= −η ·SGUT
(η − 5c1) .

The above considerations were homological. In appendix A we reproduce this result

by doing the computation with a specific representative of the universal γ, which is useful

when P factorizes.

3 Constraints and U(1) symmetries

One of our primary goals is the construction of compact F-theory GUT models with as

many realistic features as possible. Before proceeding to discuss compact models, however,

it is important to first spell out some simple requirements that we shall impose in order to
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lay the groundwork for obtaining realistic phenomenology. These constraints are largely

taken from the extensive literature on local models, though they comprise only a subset

of the structures that have been introduced in that context. Ultimately, we will find that

a seemingly mild set of constraints severely restricts the class of constructions that are

allowed. The resulting models are guaranteed to have a gauged U(1) that is a linear com-

bination of U(1)B−L and U(1)Y and an accidental global U(1)PQ symmetry that emerges

at the level of the renormalizable Lagrangian.

Because the resulting class of models is so restrictive, it is also interesting to consider

the possibility of relaxing some of our constraints. As we shall see, a constraint associated

with the removal of certain charged exotics is of particular importance and we will comment

on one possible way to evade it. This scenario does not come without its own problems,

though, so we will not pursue it further in the rest of this paper.

3.1 Constraints

Let us begin with a discussion of the constraints that we seek to impose when constructing

F-theory GUT models. Roughly, we can summarize them as follows. We aim to achieve

models with

• GUT-breaking and doubet-triplet splitting via nontrivial hypercharge flux

• MSSM Superpotential

• Absence of dangerous dimension 4 proton decay operators

• Symmetries that forbid a bare µ term

• Structure that favors the existence of flavor hierarchies

The issues of GUT-breaking and doublet-triplet splitting have been discussed at length in

the literature [4, 5]. What we need for this is an internal flux, FY , that threads the Higgs

matter curves and is dual in SGUT to two-cycle that is trivial in B3.

3.1.1 Dimension 4 proton decay operators

Before the appearance of [15], it was conventionally assumed that when a curve of enhanced

symmetry factored inside SGUT, the wave functions that localized on the distinct factors

were completely distinct. This meant that the superpotential was completely determined by

the intersection structure of the various factors so that, if we decided to localize 5M on one

factor and 10M on a second, the failure of these two curves to exhibit the proper intersection

could be used to prevent the generation of a 10M × 5M × 5M superpotential coupling.

As reviewed in section 2.2.3, though, a crucial observation of [15] is the inability to

completely separate wave functions on factors of 10 (5) matter curves that come from the

same component of C10 (C5). Such factors will typically intersect one another at a collection

of points that do not exhibit a singularity of rank larger than 6. In that case, they comprise

a single matter curve that has effectively ”pinched” so that their wave functions are related

through nontrivial boundary conditions. It is for this reason that we reserve the term matter

curve for the complete locus on a component of C10 (C5) where 10 (5) fields can localize.

– 18 –



J
H
E
P
0
8
(
2
0
0
9
)
0
4
6

What this means, however, is that the symmetry structure described in section 2.2 is

the only control that we have over the superpotential.4 To avoid running into trouble with

current bounds on the proton lifetime, then, we must realize enough structure to expressly

forbid the usual problematic dimension 4 operators, 10M ×5M ×5M and 10M ×5H ×5H .

3.1.2 Favorable flavor structure

The requirement that models contain a ”structure that favors the existence of flavor hierar-

chies” is rather vague and requires further precision. What we aim to achieve are hierarchies

in the Yukawa matrices that arise in the manner proposed in [6], namely through the natu-

ral properties of wave function overlap integrals. A necessary condition for this mechanism

to operate is that all three generations of the 10 (5) must be engineered on a single 10 (5)

matter curve, Σ10M
(Σ5M

).

It is important to note that this condition is far from sufficient. Indeed, to get honest

hierarchies with minimal mixing in the quark sector, it is necessary that both the up-type

and down-type Yukawa couplings originate from a single unique point where the singularity

type is enhanced to at least E7. For the neutrino models of [9], it is in fact required to

enhance up to E8. At present, we are not so ambitious as to include this condition in our

list of requirements. Rather, we view this as a tuning that will be necessary to impose once

certain weaker conditions are met.

3.1.3 No charged exotics

Finally, we require that there are no charged exotics. In general, charged exotics that do

not comprise a full GUT multiplet can arise whenever hypercharge flux threads a matter

curve (other than the ±1 unit of hypercharge flux required to engineer Higgs doublets).

This is potentially troublesome in the case of 10 matter curves because we can associate to

each a unique set of charges under the U(1) gauge symmetries that remain after performing

the quotient. Exotic chiral matter fields on different 10 matter curves will therefore be

unable to form invariant mass couplings, making it impossible to lift them from the theory.5

For this reason, we will require that there be no net hypercharge flux on any of the 10

matter curves.

3.1.4 Precise statement of constraints

We are now ready to finally state the precise constraints that we impose.

• Turn on a nontrivial hypercharge flux FY that is dual in SGUT to a two-cycle, which

is a trivial class in B3

4It was suggested in [15] that some undesirable superpotential couplings could be suppressed if, say, the

zero mode wave functions associated to 5M and 5H were realized on a single matter curve that ”pinches”

into factors but are effectively ”localized” on different factors. If this localization property can be realized,

then the 10M × 5M × 5M , while nonzero, would be significantly suppressed. The authors of [15] concluded

that this suppression would likely not be sufficient to avoid conflicts with current bounds on the proton

lifetime.
5It is possible that masses for these exotics get generated when the typically anomalous U(1) symmetries

are broken. One would most naturally expect relatively small masses in this case, though, so we will require

that no such exotic chiral matter be engineered in the first place.
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• All three generations of 10M (5M ) must localize on a single matter curve, Σ10M

(Σ5M
)

• The 5H and 5H fields must localize on distinct matter curves, Σ5H
and Σ5H

, which

satisfy FY · Σ5H
= 1 and FY · Σ5H

= −1

• All 10 matter curves, Σ
(i)
10

, must satisfy Σ
(i)
10

· FY = 0

• All MSSM Yukawa couplings, 10M ×10M ×5H and 10M ×5M ×5H , must be realized

• The dimension 4 operators 10M × 5M × 5M , 10M × 5H × 5H must be forbidden

3.2 Implications of the constraints

Let us turn now to the implications of these constraints for the construction of F-theory

models, and thier consequences upon the structure of C10.

3.2.1 Getting nontrivial restrictions on the superpotential

The first thing to note is that any nontrivial restriction on superpotential couplings involv-

ing 10 and 5 fields beyond simple SU(5) invariance requires C10 to factorize into at least

two components. To see this, suppose that C10 instead does not factorize. In this case,

the monodromy group G is isomorphic to one of the transitive subgroups of S5 listed in

section 2.2.2. By definition, the {λi} form a unique orbit under the action of G so in order

to get any nontrivial structure it is necessary for the set of {λi + λj}, to which the 5 fields

are associated, to comprise more than one orbit. This rules out all possibilities except Z5.

Taking G = Z5 to be generated by (12345), {λi + λj} splits into two orbits so that we get

the following matter curves

10 : {λ1, λ2, λ3, λ4, λ5}

5
(1)

: {λ1 + λ2, λ2 + λ3, λ3 + λ4, λ4 + λ5, λ5 + λ1}

5
(2)

: {λ1 + λ3, λ2 + λ4, λ3 + λ5, λ4 + λ1, λ5 + λ2} .

(3.1)

It is now easy to see that all couplings that are allowed by SU(5) invariance can also be

obtained from couplings in the ”parent” theory that are invariant under the full U(1)4

Cartan of SU(5)⊥.

To obtain the structure needed to forbid dimension 4 baryon number violating opera-

tors, then, we need that

C10 factors into at least two components

This guarantees that at least one U(1) gauge boson will survive the quotient by G.

3.2.2 Obtaining up-type 10M × 10M × 5H Yukawas

Recall that the 10M × 10M × 5H coupling originates from points of E6 enhancement

where locally

0 = λi = λj = λi + λj , i 6= j . (3.2)
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To realize such a coupling while keeping all three generations of 10M ’s on a single matter

curve, it is necessary that there be a monodromy connecting λi and λj . This means that the

10M matter curve must be contained within a single component, C(10M ), of C10 of degree

at least 2. Further, the 5H component must be ”contained” in C(10M ) in the sense that it

must arise, in the notation of section 2.2.3, from C(10M ) ∩ τC(10M ). We can summarize this

by saying that

10M and 5H matter curves must be contained within a single component of C10

3.2.3 Hypercharge flux and exotics

Let us now turn to the implications of our many conditions related to the hypercharge flux.

To start, note that a generic factorization of C10 takes the form

C10 =
∏

i

C
(i)
10 =

∏

i

(

χ(i)V mi + . . .)
)

, (3.3)

where the classes [χ(i)] are pulled back from SGUT and the omitted terms . . . vanish at U =

0. It is important to note that the classes of all coefficients that specify this factorization

are now determined uniquely in terms of the [χ(i)] and the first Chern class, c1, of SGUT.

The [χ(i)] are telling us something physical, though — they are simply the projection of

the 10 matter curves to SGUT. Our constraint that hypercharge flux restricts trivially to

each of these thus amounts to

FY · [χ(i)] = 0 . (3.4)

Triviality of the hypercharge flux in B3 also implies that

FY · c1 = 0 , (3.5)

which means that the intersection of FY with the class of any section appearing as a

coefficient in (3.3) must vanish.

This has important implications for the 5 matter curves. If the monodromy group is as

large as possible for a given factorization of C10, namely a product of the relevant symmetric

groups, then the 5 matter curves are uniquely determined by certain polynomials in the

coefficients of (3.3). This means that there is no net hypercharge flux on any 5 matter

curves, making it impossible to properly engineer the Higgs sector!

What we can do for the moment is associate both Hu and Hd to a single matter curve.

From this perspective, they will comprise a vector-like pair that we would generically

expect to lift from the spectrum. This is essentially a statement of the µ problem, and we

will return to the resolution of this issue shortly. For now, however, we can combine our

requirement for Hu and Hd with the result of section 3.2.2 to obtain

10M , 5H , and 5H matter must all be localized within a single component of C10
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3.2.4 Obtaining down-type 10M × 5M × 5H Yukawas

Let us return now to the issue of realizing the MSSM superpotential and recall the origin

of the down-type 10M × 5M × 5H Yukawa coupling

0 = λi + λj = λk + λℓ = λm , i, j, k, ℓ,m distinct . (3.6)

To obtain such a coupling when 10M and 5H both localize entirely within a single com-

ponent C(10M ) of C10, it is necessary that the degree of C(10M ) be at least 3. In other

words,

10M , 5H , and 5H must localize in a single component of C10 of degree at least 3

3.2.5 Three options. . . so far

The factorizations of C10 that are consistent with everything we have said thus far are

• C10 = C
(3)
10

+ C
(2)
10

• C10 = C
(3)
10

+ C
(1),1
10

+ C
(1),2
10

• C10 = C
(4)
10

+ C
(1)
10

where we have indicated the degree of each factor. In each case, the matter fields arise

from the following components of C10 modulo the necessary subtractions for isolating 5

matter curves, explained in section 2.2.3

Factorization 10M 5H + 5H 5M

C
(3)
10

+ C
(2)
10

(U = 0) ∩ C
(3)
10

C
(3)
10

∩ τC
(3)
10

C
(2)
10

∩ τC
(2)
10

C
(3)
10

+ C
(1),1
10

+ C
(1),2
10

(U = 0) ∩ C
(3)
10

C
(3)
10

∩ τC
(3)
10

C
(1),1
10

∩ τC
(1),2
10

+ C
(1),2
10

∩ τC
(1),1
10

C10 = C
(4)
10

+ C
(1)
10

(U = 0) ∩ C
(4)
10

C
(4)
10

∩ τC
(4)
10

C
(4)
10

∩ τC
(1)
10

+ C
(1)
10

∩ τC
(4)
10

(3.7)

Further, in each case we realize one anomalous U(1) gauge symmetry for controlling the

superpotential under which the MSSM fields are charged.6 In fact, the U(1) charges of

MSSM matter fields are identical in each case:7

Field U(1)

10M 1

5M −3

5H −2

5H 2

(3.8)

Quite nicely, this U(1), which is a combination of U(1)Y and U(1)B−L, is sufficient to forbid

all baryon number violating dimension 4 operators.

6The case C
(3)
10

+ C
(1),1
10

+ C
(1),2
10

realizes a second anomalous U(1) gauge symmetry but it does not couple

to any of the MSSM fields.
7This occurs because the charges are completely fixed by the fact that all MSSM Yukawas are realized

combined with our requirement that the Higgs multiplets, 5H and 5H , arise from the same component (and

hence have opposite charges)
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3.2.6 The µ problem and U(1)PQ

While we have identified three candidate factorizations of C10 that satisfy most of our

desired constraints, recall from the discussion of section 3.2.3 that we have a potentially

serious problem with the Higgs sector. This is because we were forced to require Hu and

Hd to localize within the same component of C10. If the monodromy group is the generic

one for such a situation, namely a product of symmetric groups, then Hu and Hd must

come from the same matter curve. This matter curve has no net hypercharge flux so what

we require to get the Higgs sector right, then, is a nongeneric situation in which a vector-

like pair on a single matter curve remains massless in the absence of any symmetry that

guarantees it. This is just a restatement of the standard µ problem, which we would like

to avoid.

To resolve this issue, it is necessary to refine the geometry so that the monodromy

group G is not a product of symmetric groups but rather a suitable subgroup thereof.

However, it is important that G not be so small of a subgroup that C10 factors beyond the

options presented in section 3.2.5. As we saw at the end of section 2.2.4, such a refinement

is not possible unless the number of components of C10 is 4 or 5. If all of the components of

C10 are linear or quadratic, G is uniquely determined by the factorization of C10. Further,

when C10 has a cubic piece the only transitive subgroup of S3 is A3, which does not lead to

any further refinement of the 5 matter curves of the type that we need for our Higgs sector.

For these reasons, we are forced to consider the 4+1 factorization,

C10 = C
(4)
10 + C

(1)
10 . (3.9)

In this case, we need G to be a proper transitive subgroup of S4 whose action on the set

{λi + λj}, 1 ≤ i 6= j ≤ 4, decomposes into at least two distinct orbits. From the list of

possibilities of section 2.2.2, it is easy to see that only three have this property. These are

G = Z4, D4, or V . (3.10)

3.3 The cases G = Z4, D4, and V

We now describe the structure of theories with monodromy groups G = Z4, D4, and V in

detail in order to explicitly see how all of our conditions are satisfied.

We start with the case G = Z4 and consider, for illustration, the specific Z4 subgroup

of S5 generated by (1234). We obtain several matter curves associated with the following λi

10(1) : {λ1, λ2, λ3, λ4}

10(2) : {λ5}

5(1) : {λ1 + λ2, λ2 + λ3, λ3 + λ4, λ4 + λ1}

5(2) : {λ1 + λ3, λ2 + λ4}

5(3) : {λ1 + λ5, λ2 + λ5, λ3 + λ5, λ4 + λ5}

(3.11)

From this, it is easy to see that if we identify 10M ∼ 10(1), 5M ∼ 5
(3)

, and 5H ,5H with

either 5(1),5
(2)

or 5(1),5
(2)

, then all of the MSSM couplings are present

WMSSM ∼ 10M × 10M × 5H + 10M × 5M × 5H , (3.12)
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while a bare µ term is forbidden

Wµ ∼ 5H × 5H . (3.13)

Further, hypercharge flux restricts trivially on the 10 matter curve, and thus we can

avoid getting charged exotics. At the level of renormalizable couplings, the effective action

respects an accidental U(1)PQ global symmetry

Field U(1)PQ

10M −1

5M −1

5H 2

5H 2

(3.14)

that may nonetheless be broken by certain nonrenormalizable operators.

From the perspective of couplings involving 10, 5 fields and their conjugates, the D4

case is identical to this. As an explicit example, we can consider the D4 subgroup generated

by (1234) and (13). In this case, the breakdown of 10 and 5 matter curves is identical

to (3.11).

Turning now to the case G = V = {1, (12)(34), (13)(24), (14)(23)}, the structure of

5 matter curves is slightly more refined. In particular, the 5(1) matter curve splits in two,

leading to

10(1) : {λ1, λ2, λ3, λ4}

10(2) : {λ5}

5(1) : {λ1 + λ2, λ3 + λ4}

5(1)′ : {λ1 + λ4, λ2 + λ3}

5(2) : {λ1 + λ3, λ2 + λ4}

5(3) : {λ1 + λ5, λ2 + λ5, λ3 + λ5, λ4 + λ5}

(3.15)

Nevertheless, if we identify 10M ∼ 10(1), 5M ∼ 5
(3)

, and 5H ,5H with some pair

5(a),5
(b)

associated to distinct matter curves then we again realize the MSSM superpoten-

tial while forbidding dimension 4 proton decay operators and a bare µ term. Because of

this, U(1)PQ (3.14) again arises as an accidental global symmetry of the action at the level

of renormalizble couplings.

3.4 Implications for SUSY-breaking and neutrino physics

We would like to know if one of the restricted set of scenarios that have been singled out thus

far can even in principle accommodate any of the successes of local models regarding gauge

mediation and the generation of neutrino masses. The answer to this is not immediately

obvious because the scenarios that seem to emerge from our constraints have not explicitly

appeared in the literature thus far.
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The crucial difference between the structures that we find and those that have been

studied in the local context is the presence or absence of a gauged U(1)PQ symmetry

responsible for forbidding a bare µ term. For us, only one gauged U(1) was allowed and

this was a combination of U(1)B−L and U(1)Y . Any U(1)PQ arose as an accidental global

symmetry of the renormalizable Lagrangian. On the other hand, studies of local models

often take a gauged U(1)PQ as an important starting point [10–12]. What we would like

to ask now is how crucial this gauge symmetry actually is.

To study this issue further, it is necessary to go beyond a simple analysis of the 10,

5 matter curves and include also the matter curves on which GUT singlets, 1, localize.

These are identified with weights λi − λj so it is easy to work out their structure in the

three cases of interest. Let us start again with the case G = Z4 since this will illustrate

the most important points. There, in addition to the 10 and 5 matter curves

10M : {λ1, λ2, λ3, λ4}

10(2) : {λ5}

5(1) : {λ1 + λ2, λ2 + λ3, λ3 + λ4, λ4 + λ1}

5(2) : {λ1 + λ3, λ2 + λ4}

5M : {λ1 + λ5, λ2 + λ5, λ3 + λ5, λ4 + λ5}

(3.16)

where 5H ,5H ∼ 5(i),5
(j)

with i 6= j, we have also the singlet matter curves

1(1) : {λ1 − λ2, λ2 − λ3, λ3 − λ4, λ4 − λ1}

1(1)′ {−(λ1 − λ2),−(λ2 − λ3),−(λ3 − λ4),−(λ4 − λ1)}

1(2) : {λ1 − λ3, λ2 − λ4,−(λ1 − λ3),−(λ2 − λ4)}

1(3) : {λ1 − λ5, λ2 − λ5, λ3 − λ5, λ4 − λ5}

1(3)′ : {−(λ1 − λ5),−(λ2 − λ5),−(λ3 − λ5),−(λ4 − λ5)}

(3.17)

In the supersymmetry breaking scenarios of [10–12], the µ term is generated via a Giudice-

Masiero type mechanism involving a coupling of the form

∫

d4θ
X†HH

Λ
. (3.18)

Here, X is a singlet field whose F -component expectation value is responsible for breaking

supersymmetry. When (5H ,5H) ∼ (5(1),5
(2)

), this coupling arises if we identify X ∼ 1(1).

If instead, we have (5H ,5H) ∼ (5(2),5
(1)

) then it is necessary to identifyX ∼ 1(1)′. Further,

in both cases a coupling of the form

∫

d4θ
|X|2HH

Λ2
, (3.19)

is forbidden. It was this coupling that could generate a Bµ term and its absence assures that

the solution to the µ/Bµ problem in [10–12] is retained. Before moving on to neutrinos, we

should note that the spurion field X is no longer charged under a gauged U(1) symmetry.
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This means that models of this sort do not lead to a ”PQ-deformed” gauge mediation

scenario [11] but instead a scenario closer in spirit to [12]. Further, we do not immediately

know the consequences of this lack of a gauged U(1)PQ on the ability of stringy instantons

to trigger supersymmetry-breaking along the lines of [23, 24]. It would be interesting to

address this further.

To discuss neutrino physics, we focus on the two principal scenarios described in [8, 9].

The first is a Majorana scenario in which KK modes play the role of a tower of ”right

handed neutrinos” and, when integrated out, generate an operator of the form

∫

d2θ
(HuL)2

Λ2
. (3.20)

This descends from the
(

5H × 5M

)2
and is expressly forbidden by our gauged U(1)B−L.

This is not to say that Majorana neutrinos masses cannot be accommodated at all, but

rather their generation must, as usual, be associated with the breaking of U(1)B−L.

Turning now to the Dirac scenario of [8], we recall that it is based on an operator of

the form
∫

d4θ
H†

dLNR

Λ
, (3.21)

where NR is a right-handed neutrino. Because Hd picks up an F -component expectation

value from the µ term proportional to [Hd]θ2 ∼ µ < Hu >, this leads to a Dirac neutrino

mass with suppression factor µ/Λ. Of the possible candidates for NR, only 1(3) is suitable.

Once this choice is made, we see that the desired operator is allowed regardless of whether

we choose 5H ,5H ∼ 5(1),5
(2)

or 5H ,5H ∼ 5(2),5
(1)

. Note, however, that a standard Dirac

mass operator is also allowed
∫

d2θHuLNR , (3.22)

which arise with O(1) coefficient from the point of E8 enhancement, that is required to

minimize flavor mixing [8, 9]. The beautiful suppression of neutrino masses from (3.21) is

unfortunately lost because we have nothing to prevent a ”bare” Dirac mass that overwhelms

it. This problem is related to the lack of a gauged U(1)PQ symmetry. Without it, (3.21)

and (3.22) are on an equal footing as far as their charges under U(1) gauge symmetries are

concerned. We can make an assignment of U(1)PQ charges that allows (3.22), reflecting

the fact that it arises as a global symmetry of the renormalizable Lagrangian, but nothing

a priori prevents the generation of higher dimension operators such as (3.22) that violate

it. In the case of the Bµ generating operator (3.19), we were lucky enough that it was

forbidden anyway. With neutrinos, we have not been so fortunate.

It is easy to verify that considering G = D4 or G = V will not improve the situation

significantly. The existence of a gauged U(1)B−L doomed the KK Majorana scenario while

the lack of a gauged U(1)PQ doomed the Dirac scenario.

To summarize, then, our restricted set of scenarios shows some promising signs of

being able to accommodate the general gauge mediation framework that has emerged from

studies of local models [10, 11]. However, there seem to be serious problems with neutrinos.
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3.4.1 Relaxing the constraints?

Because of the tension with the successful neutrino scenarios of [8, 9], it would be inter-

esting to determine whether any of the constraints in section 3.1.4 can be relaxed. In this

subsection, we make some preliminary comments about this issue.

The most stringent constraint is the requirement that FY · Σ
(i)
10 = 0 for all 10 matter

curves, Σ
(i)
10 . This is what forced us to realize both 5H and 5H on the same component of

C10 and hence it is responsible for U(1)B−L, rather than U(1)PQ, emerging as the gauged

U(1) that forbids dimension 4 proton decay operators. What if we relaxed this constraint?

If we allow FY · Σ
(i)
10 6= 0 on some 10 matter curves then we are guaranteed to get

charged exotics that do not comprise a full GUT multiplet. From the SU(5) point of

view they will come in vector-like pairs but they will be distinguished by their charges

under U(1) gauge symmetries that remain after the quotient. For simplicity, let us suppose

that nontrivial hypercharge flux threads only two 10 matter curves, Σ
(1)
10 and Σ

(2)
10 . The

corresponding exotics cannot couple to one another directly because the term 10(1) ×10
(2)

is forbidden. However, they can couple through a singlet field via operators that descend

from terms like

10(1) × 10
(2)

× 1 , (3.23)

which like all other couplings originates from 2483 of E8. If some dynamics causes this

singlet to pick up a nonzero bosonic expectation value then the unwanted exotics can pick

up a nonzero mass.

Quite remarkably, something similar already happens in the gauge mediation scenarios

required by E8 unification in [9]. There, some extra 10’s localize on the 10M matter curve

while some 10’s localize on a different 10 matter curve. These couple to the spurion field

X that triggers supersymmetry breaking via

X × 10 × 10 , (3.24)

and hence play the role of gauge messengers. When X picks up a nonzero expectation

value, they get a mass proportional to 〈X〉 which, for typical F-theory GUT scenarios, is

only a few orders of magnitude below MGUT.

A possible remedy for our present troubles,8 then, is to allow hypercharge flux to

thread the matter curves on which the gauge messengers localize in the models of [9]. The

dynamics of supersymmetry breaking will push the exotics, which are now playing the role

of gauge messengers, to a relatively high scale, namely the messenger scale.9 If we do this,

then it is possible to realize all of the other constraints of section 3.1.4 with the monodromy

groups of [9].

3.4.2 Incomplete GUT multiplets and unification

What about the effect on gauge coupling unification? While these incomplete GUT multi-

plets will prevent unification, it is important to note that unification is already disrupted

8 Another possibility is to include higher order terms in the expansion of f and g in powers of z in

section 2.1. This could possibly provide us with more freedom.
9Recall, that in the scenarios of [10, 11] the expectation value is of order 1012

− 1014 GeV.
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at MGUT in these models [17]. This is because the internal hypercharge flux modifies the

SU(3), SU(2), and U(1)Y gauge kinetic terms at MGUT through the Chern-Simons coupling

SCS ∼

∫

R3,1×SGUT

C0 ∧ tr
(

F 4
)

. (3.25)

As demonstrated in [17], this splitting means that the strong condition of gauge coupling

unification is replaced by the slightly weaker one that the various MSSM gauge couplings

at the GUT scale, α−1
3 (MGUT), α−1

2 (MGUT), and α−1
1 (MGUT), must satisfy

α−1
1 (MGUT) −

3

5
α−1

2 (MGUT) −
2

5
α−1

3 (MGUT) = 0 . (3.26)

Further, we expect that the couplings will not precisely unify, a rather striking claim given

that we know that the MSSM matter spectrum is fairly consistent with unification to within

a few percent. To account for this, it is in fact necessary to introduce some matter fields

at a high scale M that form incomplete GUT multiplets and whose net contributions, δbi,

to the various MSSM β function coefficients, bi, satisfy

δb1 −
3

5
δb2 −

2

5
δb3 = 0 . (3.27)

In this case, the ”apparent” unification at scales below M arises due to a cancellation

between the effects of the hypercharge flux and the new massive fields.

The easiest way to get such incomplete GUT multiplets is to engineer them on matter

curves threaded by nontrivial hypercharge flux, just as we were forced to do in order to

make favorable neutrino physics possible. Moreover, it is easy to verify directly that any

incomplete multiplets that arise in this way, either on 10 or 5 matter curves with nontrivial

hypercharge flux, automatically satisfy (3.27). This is reviewed briefly in appendix E.

In the end, we reach the rather surprising conclusion that favorable neutrino physics

forces the introduction of incomplete GUT multiplets which, in turn, can account for the

fact that the gauge couplings do not really unify. Solving one problem provides the solution

to a second for free. The simplest way to incorporate these incomplete GUT multiplets is

to realize them as messenger fields, at which point we expect them to provide fairly distinct

experimental signatures. With LHC data on the horizon, this would be very interesting to

investigate further.

4 Factorization of the spectral surface of type 4+1

We now turn our attention to scenarios in which the spectral surface factors into a linear

and a quartic piece, C
(1)
10

+ C
(4)
10

. We hope to address scenarios of the type discussed in

section 3.4.1 in the future [18].

In this section we discuss the properties of the factorized spectral surface as well as the

construction of fluxes. In the next section we will then give examples of three-generation

SU(5) GUT models. These will have the generic S4 monodromy group but we will comment

on how to obtain instead one of the subgroups V , Z4, or D4 in section 6.
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4.1 Factorized spectral surface

As we discussed in section 2, the fundamental spectral surface C10 is a useful object for

studying the monodromy group G that controls the structure of matter curves and the

superpotential. In general,

C10 : b0

5
∏

i=1

(s+ λi) = b0s
5 + b2s

3 + b3s
2 + b4s+ b5 = 0 . (4.1)

is irreducible so that there is very little structure. In this case, all 10 (5) multiplets that

descend from the E8 adjoint are identified under monodromies and the superpotential

contains all allowed SU(5)-invariant couplings.

As we have seen, to get enough structure that the constraints of section 3.1.4 are

satisfied, it is necessary for the spectral surface to factor into quartic and linear pieces as

C10 : (a0s
4 + a1s

3 + a2s
2 + a3s+ a4)(d0s+ d1) = 0 , (4.2)

with

b1 = a0d1 + d0a1 = 0 . (4.3)

For generic am, dn, the monodromy group here is S4 and the sheets, λi, form two

distinct orbits {λ1, λ2, λ3, λ4} and {λ5}. We get two sorts of 10 and 5 matter curves whose

charges under the single remaining gauged U(1) symmetry are given in the following table

Matter Type of Matter Curve U(1) Charge

10M λi = 0 1

5H λi + λj = 0 2

5M λi + λ5 = 0 −3

10other λ5 = 0 −4

(4.4)

Our choice of notation here is intentional as the cubic superpotential couplings with this

assignment are precisely

10M × 10M × 5H + 10M × 5M × 5H + 10other × 5H × 5H (4.5)

This is of course precisely the MSSM superpotential with no additional proton decay op-

erators provided we localize 10M , 5M , 5H , and 5H on the indicated matter curves while

avoiding the generation of any 10other zero modes. One easy way quickly remove the

10other’s is as follows. Quite intentionally, we have not specified the bundles of which the

objects am, dn are sections. A convenient choice is to take d1 to be a section of the trivial

bundle, O, on X so that, in particular, d1 is a number that can effectively be replaced by 1.

This effectively removes the 10other matter curve, whose defining equation is d1 = 0, and

fixes the remaining classes as

Section Divisor Class

U σ

V σ∞ = σ + π∗(c1)

d0 π∗(c1)

d1 O

am π∗ (η − (m+ 1)c1)

(4.6)
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It also means that, in order to satisfy (4.3), a0 must be a product

a0 = −a1d0 . (4.7)

To make all of this clear, we will write the equation for C10 as

C10 :
(

a1U
3 [V − d0U ] + a2U

2V 2 + a3UV
3 + a4V

4
)

(V + d0U) . (4.8)

The relation to the coefficients bm is now given by

b5 = a4

b4 = a3 + a4d0

b3 = a2 + a3d0

b2 = a1 + a2d0

b0 = −a1d
2
0 ,

(4.9)

where we used the constraint (4.7) that arises from b1 = 0.

4.2 Matter curves

We can analyze the various matter curves in more detail, by recalling that they originate

from the intersection of C10 with its image under V → −V . In this case, that image is

τC10 : −
(

−a1U
3 [V + d0U ] + a2U

2V 2 − a3UV
3 + a4V

4
)

(V − d0U) . (4.10)

In appendix B we study the decomposition of C10 ∩ τC10 into the three pieces described

in section 2.2.3. We now summarize, how the three components of C10 ∩ τC10 split among

the factors Ci
10

∩ τCj
10

. First we recall the classes of C10 and its two components inside X,

C10 : 5σ + π∗η , C
(1)
10

: σ∞ , C
(4)
10

: 4σ + π∗(η − c1) . (4.11)

Then the various factors of C10 ∩ τC10 split as follows:

Type C
(1)
10

∩ τC
(1)
10

C
(1)
10

∩ τC
(4)
10

+ C
(4)
10

∩ τC
(1)
10

C
(4)
10

∩ τC
(4)
10

Total in C10 ∩ τC10

10 M.C. · · σ · π∗(η − 5c1) σ · π∗(η − 5c1)

5 M.C. · 2σ · π∗(η − 3c1) 2σ · π∗(2η − 7c1) 2σ · π∗(3η − 10c1)

· +2π∗(c1) · π
∗(η − 3c1) +π∗(η − 2c1) · π

∗(η − 3c1) +π∗(η) · π∗(η − 3c1)

∩ at ∞ σ∞ · π∗c1 4σ∞ · π∗c1 σ∞ · π∗(3η − 5c1) 3σ∞ · π∗η

Total σ∞ · π∗c1 2 × (σ∞ · π∗(η − c1)) 8σ · π∗(η − 3c1) (5σ + π∗η)2

+π∗(η − c1)
2

(4.12)

Here we list both the contributions to the 10 and 5 matter curves, as well as the inter-

section at infinity. We see that the ”Total” column is precisely the net class of the various

components of C ∩ τC.
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4.3 Yukawa structure

On general grounds, we expect this factorization to produce two distinct 5 matter curves

and intersections that produce precisely the MSSM superpotential couplings and nothing

more. We can see this explicitly as follows.

First, recall that the defining equation for the 10 matter curve is

0 = b5 = a4 (4.13)

As expected, setting d1 = 1 has left us with a single 10 matter curve. Now, note that the

defining equation for the 5 matter curve is given by

0 = P = b0b
2
5 − b2b3b5 + b23b4 = (a3 (a2 + a3d0) − a1a4) (a2 + d0 (a3 + a4d0)) . (4.14)

which is automatically factored. The two components are denoted by PH,M

PH = (a3 (a2 + a3d0) − a1a4) , PM = (a2 + d0 (a3 + a4d0)) . (4.15)

Note further that

P |a4=0 ∼ a3(a2 + a3d0)
2 , (4.16)

where PH |h=a4=0 = a3(a2 + a3d0) and PM |h=a4=0 = (a2 + a3d0).

Now consider the Yukawa couplings, which arise from rank two enhanced points. One

obtains 10× 5× 5 couplings from SO(12) points where b3 = b5 = 0. In our new variables,

this corresponds to

SO(12) : a4 = a2 + a3d0 = 0 . (4.17)

In particular, at these points both PH and PM vanish, and thus the matter fields on both

participate in the Yukawa coupling. This correctly reproduces the 10M×5M×5H coupling.

On the other hand, one obtains 10×10×5 couplings from E6 points where b4 = b5 = 0.

In our new variables, this is equivalent to

E6 : a4 = a3 = 0 , (4.18)

and thus only the 10 matter curve and the component PH of the 5 matter curve participate.

This gives us precisely the 10M × 10M × 5H Yukawa coupling.

4.4 Flux quantization

In section 2.3.3 we discussed the quantization condition for bundles on a generic spectral

surface C10. Here we consider the split C10 = C
(4)
10

+ C
(1)
10

so that we have bundles L4 and

L1 on C
(4)
10

and C
(1)
10

along with two ramification divisors, r4 and r1. Furthermore, there are

two projection maps

p
C
(1)
10

: C
(1)
10

→ S , p
C
(4)
10

: C
(4)
10

→ S . (4.19)

The condition that we need to impose there is that

0 = c1(pC(4)
10

∗
L4)+c1(pC(1)

10
∗
L1) =

[

p
C
(4)
10

∗
c1(L4) −

1

2
p
C
(4)
10

∗
r4

]

+

[

p
C
(1)
10

∗
c1(L1) −

1

2
p
C
(1)
10

∗
r1

]

.

(4.20)
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We decompose c1(L4) and c1(L1) similarly as

c1(L4) =
1

2
r4 + γ4 , c1(L1) =

1

2
r1 + γ1 , (4.21)

and require that

p
C
(4)
10

∗
γ4 + p

C
(1)
10

∗
γ1 = 0 . (4.22)

To study the implications of this, let us compute r1 and r4. Recalling that X = P(O⊕KS)

is the ambient space and that c1(TX) = 2σ∞ we have that

c1(TC(1)
10

) =
[

c1(TX) − [C
(1)
10

]
]

|
C
(1)
10

= σ∞|
C
(1)
10

c1(TC(4)
10

) =
[

c1(TX) − [C
(4)
10

]
]

|
C
(4)
10

= (−2σ∞ − π∗(η − 5c1)) |C(4)
10

.
(4.23)

This means that

r1 = −σ ∩ C
(1)
10

= 0

r4 = (2σ + π∗(η − 2c1)) ∩ C
(4)
10
.

(4.24)

That r1 is trivial is a natural consequence of the fact that it is a ”1-sheeted” cover of S

and hence is unramified. On the other hand, r4 is even, a result that follows naturally from

the fact that it is an even-sheeted cover of S. This means that both γ1 and γ4 are integer

quantized.

An important consequence of this integral quantization is, that we do not need to

switch on the universal flux. This is in contrast to e.g. the case of the 5-sheeted unfactored

cover, where the flux was half-integrally quantized and a nonzero universal flux had to be

switched on. In appendix C we compute the chiral spectrum induced by the universal flux.

In the next section we turn on non-universal fluxes but turn off universal flux, which is

allowed for the split C10 = C
(4)
10

+ C
(1)
10

.

4.5 Nonuniversal fluxes

Let us now describe several ways to construct nonuniversal fluxes. In each case, we start

with a curve α0 in SGUT that can be lifted to various sheets of C10. One trivial example of

such a lift is obtained by pulling back α0 to C
10(1) via the projection pC

10
(1)

. We call this

curve α̃,

α̃ = p∗
C
(1)
10

α0 (4.25)

Using this we can construct a traceless flux as

4α̃− p∗
C
(4)
10

p
C
(1)
10

∗
α̃ (4.26)

To do anything else, we need a curve α ∈ H2(C
(4)
10
,Z) such that p

C
(4)
10

∗
α = α0. In

general, if α0 is defined by

α0 : Fα0 = 0, zSGUT
= 0, U = 0 (4.27)
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for some defining equation Fα0 in SGUT then we can construct a lift, α, to a single sheet

of C
(4)
10

as

α : Fα0 = 0 zSGUT
= 0 fV + gU = 0 (4.28)

for some suitable f and g which must be tuned to ensure α ⊂ C
(4)
10

. Using such an α, we

can construct two types of traceless fluxes

1. 4α− p∗
C
(4)
10

p
C
(4)
10

∗
α

2. α− p∗
C
(1)
10

p
C
(4)
10

∗
α = α− α̃ .

(4.29)

The only other possibility is if we have multiple αi in C
(4)
10

which satisfy p
C
(4)
10

∗
αi = α0. In

that case, we can construct any sum

ãα̃+
∑

i

aiαi (4.30)

provided

ã+
∑

i

ai = 0 . (4.31)

The net chirality induced on the 10 matter curves equals the net chirality induced on the

5 matter curves, and is given by

N total
10

= N total
5

= γ · Σtotal
10 . (4.32)

5 Fluxes and models with three generations

In this section we give examples for fluxes that give rise to models with three generations

and the correct Yukawa couplings.

5.1 Three generation example

In our first example we consider switching on flux only in the C
(4)
10

part of the cover. We

need to ensure that no chiral generations are introduced on Σ5,H . This can be achieved by

starting with an α0 ∈ H2(SGUT,Z) that has the following intersections inside SGUT

α0 ·S Σ10 = m 6= 0 , α0 ·S P5,H = 0 . (5.1)

From this, we construct a curve α ∈ C
(4)
10

as in (4.28) such that α covers α0 but does not

intersect U = 0. Then, we build the traceless flux

γ = 4α− p
C
(4)
10

∗
p∗
C
(4)
10

α . (5.2)

If we evaluate γ ·
C
(4)
10

Σ10 the result will be −m. Further, if we evaluate γ ·
C
(4)
10

Σ5,H we are

guaranteed to get 0 because α0 misses P5,H = 0. The net 10 and net 5 chiralities have to

agree, and thus this guarantees that γ ·
C
(4)
10

Σ5,M = −m.
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5.1.1 Sanity check

A necessary condition for this to work seems to be that α0 intersect P5,M in SGUT. We can

see that this has to be the case as follows: Recall that inside SGUT, the classes of P5,M ,

P5,H , and Σ10 are

[Σ10]|SGUT
= η − 5c1

[PH ]|SGUT
= 2η − 7c1

[PM ]|SGUT
= η − 3c1 .

(5.3)

Now, suppose that α0 had vanishing intersection with both PH and PM . This would

imply that

α0 ·SGUT
[PH − 2PM ] = 0 =⇒ α0 ·SGUT

c1 = 0 . (5.4)

This combined with requiring α0 ·SGUT
PH = 0 individually would force α0 ·SGUT

η = 0 and

hence force α0 to have vanishing intersection with all of Σ10, PH , and PM inside SGUT. So

if α0 intersects Σ10 but not PH inside SGUT it is forced to intersect PM at least once.

5.1.2 Getting three generations

Now let us turn our attention to the possible choices we have for m. The condition that

α0 misses PH requires

2α0 ·SGUT
η = 7α0 ·SGUT

c1 , (5.5)

which further implies that

α0 ·SGUT
(η − 5c1) = −

3

2
α0 ·SGUT

c1 . (5.6)

Because α0 is an integer class, this means that any such α0 has

α0 ·SGUT
c1 = 2n , (5.7)

for some integer n. From this it follows that

α0 ·SGUT
η = 7n (5.8)

and hence that

α0 ·SGUT
Σ10 = −3n , α0 ·SGUT

P5,M = n . (5.9)

Now, suppose we construct α which covers α0 once but misses U = 0. In this case,

γ·
C
(4)
10

Σ10 = 3n, while γ·
C
(4)
10

P5,M = 4n−n = 3n. Finally, we choose n = 1 and this completes

the task of finding the required spectrum. Note, that due to the structure of the factorized

spectral cover, the presence of the correct Yukawa couplings is ensured automatically.
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5.1.3 Realization in compact geometry?

Let us now turn to the explicit compact geometry constructed in [1], where SGUT = dP2.

We review the topology of the base three-fold in appendix D. In this compact model the

classes of the total matter curves are

Σ10 = 2h− (e1 + e2)

Σ5,H = 13h − 5(e1 + e2)

Σ5,M = 8h− 3(e1 + e2) .

(5.10)

Furthermore

[FY ] = e1 − e2 . (5.11)

A curve α0 which satisfies α0 ·SGUT
P5,H = 0 and α0 ·SGUT

Σ10 = −3 is of the form

α0 = 5h− be1 − (13 − b)e2 . (5.12)

This cannot be symmetric in e1 ↔ e2. We require that α0 is globally well-defined, i.e.

arises from the intersection of a divisor in B3 with SGUT. However, divisors in the compact

model of [1], intersect SGUT in curves that are symmetric in e1 and e2. Hence if we want

to use the B3 constructed in [1] as the base for our elliptically fibered Calabi-Yau four-fold

then any α0 that we use when defining fluxes must be symmetric in e1 and e2. So, in

particular, this flux has unfortunately no realization in the geometry of [1].

5.2 Example with realization in compact setup

We will now construct fluxes, which have a realization in the compact geometry of [1],

meaning, in particular, that the class α0 inside SGUT is symmetric in e1 and e2. As in

the first example, we will avoid matter on Σ5,H by building the fluxes from α0 satisfying

α0 · Σ5,H = 0. These two requirements yield

α0 = n [10h − 13(e1 + e2)] , (5.13)

which satisfies

α0 · Σ10 = −6n , α0 · Σ5,M = −8n . (5.14)

Even numbers like this are not promising for getting an odd number of generations.

Our general approach will be to look for traceless fluxes that can give three generations

of 10’s and 5M ’s. In such a situation, it will be guaranteed that there is no net flux on

the Higgs matter curves. Our problem is that all of the relevant homological intersections

inside SGUT tend to be even. What we need, then, are fluxes whose intersections in C do

not reduce to simple homological intersections. For instance, consider the curve α in C
(4)
10

defined by (4.28) for some curve α0 in SGUT. Note that we must assume that C
(4)
10

has been

tuned so that this α is really inside C
(4)
10

.

With this assumption, the intersection of this curve with Σ10 inside C
(4)
10

is given by

the number of simultaneous solutions to

Fα0 = a4 = f = 0 , (5.15)
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inside SGUT. Generically, this number will be zero because the number of points in the set

α0 ·SGUT
Σ10 which also satisfy f = 0 vanishes. If we tune f appropriately, though, this

number can be nonzero and less than the homological intersection α0 ·SGUT
Σ10. Indeed,

we know of many instances in which expressions like α0 = f = 0 yield not a finite set of

points but rather a curve which can intersect Σ10. The canonical example in the geometry

of [1] of this is α0 ∼ W3 and f ∼ W2 in which case α0 = f = 0 defines a P
1 in the class

h− e1.

Similarly, the intersection of α with the component Σ
(4)
5,M of the 5M matter curve inside

C
(4)
10

is given by the number of simultaneous solutions to

Fα0 = PM = fd0 + g = 0 . (5.16)

In general, this will also be less than the homological intersection α0 ·SGUT
Σ5,M .

To make a traceless flux from this, we can take the construction 2. in (4.29)

α̂ = α− p∗
C
(1)
10

p
C
(4)
10

∗
α . (5.17)

The intersection of p∗
C
(1)
10

p
C
(4)
10

∗
α with Σ

(1)
5,M will be just the homological intersection α0 ·SGUT

Σ5,M . In total, then

α̂ · Σ10 = # of points in α0 ·SGUT
Σ10 with f = 0

α̂ · (Σ
(1)
5,M + Σ

(4)
5,M) = (−1) × # of points in α0 ·SGUT

Σ5,M with fd0 + g 6= 0 .
(5.18)

Further, α̂ · Σ5,H is just the difference of these two since the net number of 5’s and 10’s

must agree for traceless fluxes.

Unfortunately, the net chiralities on Σ10 and Σ5,M appear with opposite sign here. To

fix this, we could look for another flux of the same general type. A simpler option, however,

is to consider a flux of the form

β̂ =

(

4p∗
C
(1)
10

− p∗
C
(4)
10

)

β0 , (5.19)

for some β0 in SGUT. This will have intersections

β̂ · Σ10 = −β0 ·SGUT
Σ10

β̂ · Σ5,M = 3β0 ·SGUT
Σ5,M .

(5.20)

Again, let us realize this in the compact setup of [1]. Consider the choice for the

flux curves

α0 = h , β0 = 2(h − e1 − e2) . (5.21)

Further, we suppose that α0 is reducible according to h → (h − e1) + e1. We expect the

conditions f = 0 and fd0 + g = 0 to distinguish between these components. In particular,

we construct f and fd0 + g so that f = α0 = 0 contains a full curve in the class e1 while
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fd0 + g = α0 = 0 contains a full curve in the class h− e1. In this case,

α̂ ·C10
Σ10 = 1

α̂ ·C10
Σ5,M = −3

β̂ ·C10
Σ10 = 0

β̂ ·C10
Σ5,M = 12 .

(5.22)

Now, define the total flux to be

γ̂ = 3α̂+ β̂ , (5.23)

which satisfies

γ̂ ·C Σ10 = γ̂ ·C Σ5,M = 3 . (5.24)

By general reasoning, we are also guaranteed to have γ̂ · Σ5,H = 0.

All we need, then, is to choose f and g appropriately and then tune C
(4)
10

so that it

contains the curve α. One nice choice is the following. Let us take

α0 = W1 , f = W3 . (5.25)

Recall also that d0 is in the class c1 = 3h − e1 − e2. Since f is in the class h we see that

g + fd0, and hence also g itself, is in the class 4h − e1 − e2. Regardless of what d0 turns

out to be, we can use a judicious choice of g to set

g + fd0 = W4P2(Wi) , (5.26)

where P2(Wi) is a quadratic polynomial in W1,W2,W3. Now, f = α0 = 0 is not a collection

of points but rather a curve in the class e1. Similarly, g+fd0 = α0 = 0 will include a curve

in the class h− e1. We must choose P2(Wi) sufficiently generic that P2(Wi) = α0 = 0 is a

finite set of points so that there is no contribution to the intersection with Σ10.

5.3 Tuning C
(4)
10

In our discussion so far, we have assumed that γ ∈ C
(4)
10 . However, in order to ensure that

this is the case, we need to suitably tune the coefficients of C
(4)
10 . If we want it to contain a

curve of the form {fV + gU = 0, Fα0 = 0} then the cover should take the form

−a1d0U
4 + a1U

3V + a2U
2V 2 + a3UV

3 + a4V
4

= (fV + gU)
(

c0U
3 + c1U

2V + c2UV
2 + c3V

3
)

+α0

(

c̃0U
4 + c̃1U

3V + c̃2U
2V 2 + c̃3UV

3 + c̃4V
4
)

, (5.27)

which imposes the following constraints on the coefficients:

a4 = c3f + c̃4α0

a3 = c2f + c3g + c̃3α0

a2 = c1f + c2g + c̃2α0

a1 = c0f + c1g + c̃1α0

a0 = −a1d0 = c0g + c̃0α0 .

(5.28)
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In particular, we are free to choose ci, c̃j , and α0 provided these choices satisfy the non-

trivial constraint

c0g + c̃0α0 + d0 [c0f + c1g + c̃1α0] = 0 (5.29)

Said differently, we require c0g + c̃0α0 to admit d0 as a factor. In our explicit example

above, it means that

d0 divides [c0 (W4P2(Wi) −W3d0) + c̃0W1] (5.30)

or, in other words, that

d0 divides [c0W4P2(Wi) + c̃0W1] . (5.31)

For specific d0 this is not hard to arrange.

6 Towards vanishing of the tree-level µ-term

In section 3 we found that vanishing of the tree-level µ−term imposes a constraint on

monodromy group G of the fundamental spectral cover:

G ∈ {Z4,D4, V } . (6.1)

In this section we first formulate a condition on coefficients of the spectral cover to

achieve such G. Then we discuss the technical difficulty which arises in trying to satisfy

this condition.

6.1 Condition to get G ∈ {Z4,D4, V }

Let us forget for a moment that the coefficients of C
(4)
10

are nontrivial sections and just

think about the equation for C
(4)
10

as a generic quartic

f(s) := a0s
4 + a1s

3 + a2s
2 + a3s+ a4 = 0 (6.2)

for some elements ai of a particular function field F . We suppose that the roots of f(s)

lie outside of F . The minimal field extension of F that contains all of the roots is called

the splitting field of f and we shall denote it by K. Symmetries that act nontrivially on K

but fix F comprise the elements of the Galois group of f . When the ai are taken to vary

over SGUT, the monodromy group that is realized is generically equivalent to this Galois

group though it could in principle be a subgroup. In the end, we can always construct

the antisymmetric spectral surface and deduce from that precisely what monodromies

are realized.

Let us proceed then with a study of quartics and the symmetry structure of their roots

following the discussion of this topic in [25]. We assume that the quartic does not factor

since, as we argued in section 3, this is favored by phenomenological constraints. This

means that the Galois group acts transitively. The transitive subgroups of S4 are

S4, A4, D4,Z4, V , (6.3)
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where A4 is the alternating group (subgroup of even permutations inside S4), D4 is the

dihedral group, Z4 the cyclic group, and V the Klein four group generated by even permu-

tations of order 2

V = {1, (12)(34), (13)(24), (14)(23)} . (6.4)

To discriminate among these, we need to study functions of the roots that are not quite

symmetric. Let us denote the roots by u1, u2, u3, u4. The first example of such a function

is the object δ defined by

δ =
∏

i<j

(ui − uj) . (6.5)

Note that δ is simply the square root of the discriminant

δ2 = a4 . (6.6)

If the discriminant is a square then δ can be written in F and the Galois group G can only

contain those permutations that leave δ invariant. In other words a4 is a square if and only

if G ⊂ A4. Of the transitive subgroups listed above, only V is contained inside A4. This

means that

a4 is a square if and only if G = V or A4 . (6.7)

To discriminate among the others, let us define the objects

β1 = u1u3 + u2u4

β2 = u1u2 + u3u4

β3 = u1u4 + u2u3 .

(6.8)

The cubic polynomial

g = (x− β1)(x− β2)(x− β3) . (6.9)

is invariant under S4 so can be written in terms of the elementary symmetric polynomials

am. Further, the stabilizer of any βi is easily seen to be of order 8. For β1, for instance, the

stabilizer is the subgroup {1, (13), (24), (13)(24), (14)(23), (12)(34), (1234), (1432)}. This

is one of the three conjugate D4 subgroups of S4. As such, we see that if g factorizes in F ,

G ⊂ D4. Note further that both Z4 and V are contained insideD4. Summarizing all of this,

we can discriminate between various transitive subgroups of S4 using the following table

a4 is a square a4 is not a square

g is reducible G = V G = D4 or Z4

g is irreducible G = A4 G = S4

(6.10)

Of course, we still have to write g in terms of the am. This is easily accomplished

g = a3
0x

3 − a2
0a2x

2 + (a0a1a3 − 4a2
0a4)x+ 4a0a2a4 − a2

1a4 − a0a
2
3 (6.11)

This does not yet allow us to distinguish D4 from Z4. The set {λi +λj} splits into two

orbits under the D4 subgroup generated by (1234) and (13), namely {λ1 +λ2, λ2 +λ3, λ3 +

λ4, λ4 + λ1} and {λ1 + λ3, λ2 + λ4}. Note that this is the same for Z4 so for our purposes

it will not be so important to distinguish them.

We conclude that the cubic polynomial (6.11) must be reducible to ensure the absence

of a tree-level µ−term.
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6.2 Difficulty with factoring g

Let us try to factor g defined in (6.11). A simple way to proceed is to set

4a0a2a4 − a2
1a4 − a0a

2
3 = 0 . (6.12)

We should remember that we impose (4.7), to ensure b1 = 0. Plugging this into g yields

g = a1

[

a2
1d

3
0x

3 + a1a2d
2
0x

2 +
(

a1a3d0 + 4a1a4d
2
0

)

x+
[

a1a4 + d0

(

4a2a4 − a2
3

)]]

. (6.13)

Let us set

a1a4 + d0(4a2a4 − a2
3) = 0 . (6.14)

If we do this, then g has x as a factor and the monodromy group is either D4 or Z4 or V

as desired.

One potential problem is that we do not want a3 and a4 to have a common factor

because this would give an entire locus of E6 singular fibers. Instead, however, we can set

d0 = δa4 , (6.15)

for

δ ∼ 6c1 − η ∼ t . (6.16)

We then set

a1 = δ
(

a2
3 − 4a2a4

)

. (6.17)

We can do this and plug into the equation for the antisymmetric spectral surface.

We get

C5̄ = b30
[

s10 + 3s8c2 − s7c3 + s6(3c22 − 3c4) + s5(−2c2c3 + 11c5)

+ s4(c32 − c23 − 2c2c4) + s3(−c22c3 + 4c3c4 + 4c2c5)

+s2(−c2c
2
3 + c22c4 − 4c24 + 7c3c5) + s(c33 + c22c5 − 4c4c5) + (c2c3c5 − c23c4 − c25)

]

=
(

a2
3sδ(1 + a4sδ) − a2(1 + 2a4sδ)

2
)

×
[

a3 + 4a2
4δ + a2

3s
2δ(1 + a4sδ)

2 − a2s(1 + a4sδ)(1 + 2a4sδ)
2
]

×
[

a2(1 − 2a4sδ)
2(−1 + a4sδ)

2 + δ(a3
4δ + a3a4(1 − a4sδ) − a2

3s(−1 + a4sδ)
3
]

,

(6.18)

where ci = bi/b0 and we substituted in for am, etc. The third term in the product here is

the one that we had before from the factorization C5 → C
(4)
10

+ C
(1)
10

. The first two are the

newly factored sixth order polynomial that comprises the antisymmetric spectral surface

associated to C
(4)
10 .

We should also see the PH polynomial factor (and the PM polynomial not factor).

Indeed, we find that

PH → a2(a3 + 4a2
4δ) , PM → a2 + a4δ(a3 + a2

4δ) . (6.19)

Note however that the classes of the two components into which PH splits are completely

fixed and are linear combinations of c1 and t, which satisfy FY · c1 = FY · t = 0. Therefore,

one cannot get non-zero restriction of [FY ] to either of these two components of PH .
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We can try to remedy the situation by requiring g to have a root at a generic x = x0.

This amounts to solving

a2
1d

3
0x

3
0 + a1a2d

2
0x

2
0 + (a1a3d0 + 4a1a4d

2
0)x0 + (a1a4 + d0(4a2a4 − a2

3)) = 0 . (6.20)

If we notice from (4.15) that

a1a4 = a3(a2 + a3d0) − PH , (6.21)

and plug this into the order x0 term we find

PH = (a2 + a1d0x0)
(

a3 + d0(4a4 + a1d0x
2
0)

)

. (6.22)

Because PH depends on a1, a2, a3, a4, d0, this is a nontrivial condition to solve. However,

we see that whenever it is solved the Higgs matter curve necessarily factorizes. From here

it again seems that the classes of the two components into which PH splits are completely

fixed. However, we must be a bit careful about that. Note that [x0] = −2c1 so to work

with effective classes we should really talk about y0 ∼ 1/x0 with [y0] = 2c1. In terms of

y0, (4.15) becomes

y3
0PH = (a2y0 + a1d0)

[

y2
0 (a3 + 4d0a4) + a1d

2
0

]

. (6.23)

Any consistent solution of PH = a3(a2 + a3d0) − a1a4 and g(x0) = 0 will be such that y3
0

divides the right hand side of (6.23). However, it is not completely determined how this

division takes place. If y0 is a product

y0 ∼ y1y2 , (6.24)

we could adjust the classes of the factors of PH by choosing things so that each of the

factors above contains different powers of y1 and y2. Doing so, without rendering our

four-fold unacceptably singular, seems difficult thus far. We hope to return to this issue in

the future.
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A Computing the spectrum with a particular representative for univer-

sal γ

To see what happens when P becomes reducible into components let us pick a representative

for universal flux γ and compute the spectrum of 5’s. We know that γu is in the class

γu = C10 ∩ (5σ − π∗η + 5π∗c1) . (A.1)

A nice representative, γ̃, of 5σ − π∗η + 5π∗c1 is simply

γ̃ =
V 5

b0
. (A.2)

Let’s start by using γ̃ to compute the net chirality on the 10 curve. For this, we need

to compute the intersection of γ̃ with Σ10, which is the intersection of

0 = U

0 = FC10

(A.3)

or equivalently the intersection of U = 0 with b5 = 0. Because U = 0, V cannot be zero

so we get only (−1) times the intersection of U = b5 = 0 with b0 = 0. This is simply the

intersection of the b5 = 0 and b0 = 0 curves inside SGUT so that we obtain

n10 − n
10

= −η ·SGUT
(η − 5c1) . (A.4)

Now, let us turn to the net chirality on the 5 curve. We need to compute

γ̃ ∩ Σ5 , (A.5)

where Σ5 is obtained from the intersection of the following two equations

0 = b3U
2 + b5V

2

0 = b0U
4 + b2U

2V 2 + b4V
4 .

(A.6)

In particular, we get 5 times the intersection of Σ5 with V = 0 minus 1 times the intersection

of Σ5 with b0 = 0. For the intersection of Σ5 with V = 0 we find b0 = b3 = 0. This

contribution is then

5η ·SGUT
(η − 3c1) (A.7)

For the intersection of Σ5 with b0 = 0 we have already counted those points with V = 0.

For those points without V = 0 we can set V = 1 to obtain the following equations for Σ5

0 = b3u
2 + b5

0 = b0u
4 + b2u

2 + b4
(A.8)

By solving the first equation for u and plugging into the second, we see that this part of

Σ5 is a double cover of the curve in SGUT defined by P = 0 with

P = b0b
2
5 − b2b3b5 + b23b4 (A.9)
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which is singular at b3 = b5 = 0 where it intersects itself. We should perform a suitable

resolution of Σ5 in which the two sheets are separated and proceed from there. Intersecting

with b0 = 0 then yields twice the intersection number of the curve b0 = 0 with P = 0 inside

SGUT

2 × η ·SGUT
(3η − 10c1) (A.10)

Subtracting this from the first contribution (A.7) we find the net result

5η ·SGUT
(η − 3c1) − 2 × η ·S (3η − 10c1) = −η ·SGUT

(η − 5c1) . (A.11)

B Matter curves for 4+1 factorization

In this appendix we provide the details for the analysis of matter curves in all components

of C ∩ τC in the factorization C = C
(1)
10

∪ C
(4)
10

.

B.1 C
(1)
10

∩ τC
(1)
10

We start with the component of C
(1)
10

that is invariant under V → −V . This is simply

V = d0 = 0 and is in the class

C
(1)
10

∩ [V ] = σ∞ · σ∞ = σ∞ · π∗c1 (B.1)

In summary, we get contributions to various components of C ∩ τC from C
(1)
10

∩ τC
(1)
10

as follows
Component Class Equations

10 Matter Curve · ·

5 Matter Curve · ·

Intersection at Infinity σ∞ · π∗c1 V = 0, d0 = 0

(B.2)

B.2 C
(1)
10

∩ τC
(4)
10

We now turn to the intersection of C
(1)
10

with the V → −V image of C
(4)
10

. Plugging V =

−d0U into τC
(4)
10

we get

− U4d2
0(a2 + d0a3 + d2

0a4) ≡ −U4d2
0PM . (B.3)

We cannot get a solution from U = 0 but we get a solution of multiplicity two from

V = d0 = 0 and a solution of multiplicity 1 from V = −d0U and PM = 0. This corresponds

to the decomposition

C
(1)
10

∩ τC
(4)
10

= [σ∞ · π∗(η − 3c1)] + [2σ∞ · π∗c1] . (B.4)

The first of these is a 5 matter curve while the second is part of an ”intersection at infinity”,

which we neglect.

We can rewrite the class of the 5 matter curve as

σ · π∗(η − 3c1) + π∗(c1) · π
∗(η − 3c1) (B.5)
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where we understand the first term as coming from the intersection of U = −V/d0 with

PM = 0 and the second as coming from the intersection of d0 = 0 with PM = 0.

In summary, we get contributions to various components of C ∩ τC from C
(1)
10

∩ τC
(4)
10

as follows

Component Class Equations

10 Matter Curve · ·

5 Matter Curve σ · π∗(η − 3c1) + π∗(c1) · π
∗(η − 3c1) V + d0U = 0, PM = 0

Intersection at Infinity 2σ∞ · π∗c1 V = 0, d0 = 0

(B.6)

We get a similar contribution also from τC
(1)
10

∩ C
(4)
10

.

B.3 C
(4)
10

∩ τC
(4)
10

We finally turn to the components of C
(4)
10

that is invariant under V → −V . These satisfy

UV
(

a1U
2 + a3V

2
)

= 0 , −a1d0U
4 + a2U

2V 2 + a4V
4 = 0 . (B.7)

The first part of the solution is U = a4 = 0. This is in the class

σ ∩ C
(4)
10

= σ ∩ π∗(η − 5c1) (B.8)

The next component is V = a1d0 = 0. This is in the class

V ∩ C
(4)
10

= V ∩ π∗(η − c1) = σ∞ ∩ π∗(η − c1) (B.9)

What remains are the intersection of C
(4)
10

with solutions to

a1U
2 + a3V

2 (B.10)

This has a solution with multiplicity two along a1 = V = 0 which is in the class

2σ∞ · π∗(η − 2c1) (B.11)

What remains constitutes a 5 matter curve and is in the class

[2σ + π∗(η − 2c1)] · [4σ + π∗(η − c1)] − 2σ∞ · π∗(η − 2c1)

= 2σ · π∗(2η − 7c1) + π∗(η − 2c1) · π
∗(η − 3c1) (B.12)

Strictly speaking, the equations for this matter curve are

a1U
2 + a3V

2 = −a1d0U
4 + a2U

2V 2 + a4V
4 = 0 (B.13)

less the a1 = V = 0 component. We can understand how the homology class above arises

as follows. If we assume that a1 6= 0 then we can solve for U in the first equation to obtain

U = ±iV

√

a3

a1
(B.14)
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Plugging back into C
(4)
10

then yields

− (a2
3d0 + a3a2 − a4a1)

V 4

a1
≡ −PH

V 4

a1
= 0 (B.15)

Since we assumed a1 6= 0, from which it follows that V 6= 0, this component can be

described by (B.14) along with PH = 0 and is in the class

2σ · π∗(2η − 7c1) (B.16)

We must also study the ”points” at infinity where a1 → 0. In this neighborhood, we can

instead solve the above equations as a1 = −a3V
2/U2 and plug back into to C

(4)
10

to obtaon

a1 = −
a3V

2

U2
V 2

[

(a3d0 + a2)U
2 + a4V

2
]

= 0 (B.17)

The overall factor of V 2 in the second equation is capturing the a1 = V = 0 ”intersection

at infinity” component that we already considered so we drop this. Now, if a1 → 0 due

to a3 becoming small, we see that we approach smooth points on the matter curve above

that are away from V = 0. On the other hand, a1 can become small due to V becoming

small if we move toward points in S with a1 = a2 + a3d0 = 0. These points are the ones

that are accounted for homologically by the factor

π∗(η − 2c1) · π
∗(η − 3c1) (B.18)

In summary, we get contributions to various components of C ∩ τC from C
(4)
10

∩ τC
(4)
10

as follows

Component Class Equations

10 Matter Curve σ · π∗(η − 5c1) U = 0, a4 = 0

5 Matter Curve 2σ · π∗(2η − 7c1) U = ±iV (a3/a1)
1/2, PH = 0

+π∗(η − 2c1) · π
∗(η − 3c1) a1 = 0, a2 + d0a3 = 0

Intersection at Infinity σ∞ · π∗(3η − 5c1) V = 0, a1 = 0

(B.19)

C Universal fluxes for 4+1 split

Here we find the chiral spectrum for the universal flux for the split C10 = C
(4)
10

+ C
(1)
10
.

There is the standard type of universal flux, as discussed in [1, 14], which is present

also in for unfactorized spectral covers

γu = C ∩ (5σ∞ − π∗η) (C.1)

This flux is generically present and by construction traceless

pC ∗γu = 0 . (C.2)

For a factorized spectral cover, γu can be separated into a component inside C
(4)
10

and

a component inside C
(1)
10

γu = γu,1 + γu,4 , (C.3)
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which in turn are given by

γu,1 = C
(1)
10

∩ (5σ∞ − π∗η) , γu,4 = C
(4)
10

∩ (5σ∞ − π∗η) . (C.4)

Let’s first integrate γu over the 10 matter curve. Because Σ10 is contained entirely

within C
(4)
10

we get

(C
(4)
10

∩ σ) ·
C
(4)
10

(C
(4)
10

∩ 5σ∞ − π∗η) = −η ·SGUT
(η − 5c1) (C.5)

which is the same result as always. Likewise, the 5 matter curve has the same induced

chirality, as expected.

D Review of three-fold base in the compact model

In [1] we constructed compact almost Fano three-folds X and X̃ which can be used as a

base of elliptically fibered Calabi-Yau four-fold. Here we briefly review this construction

and summarize the topology of X and X̃.

D.1 Construction

Let Z = P
3 with homogenous coordinates [Z0, Z1, Z2, Z3]. The canonical class is given in

terms of the hyperplane class H as

KZ = −4H . (D.1)

Inside P
3, we consider the nodal curve C defined by the equations

Z4Z1Z2 + (Z1 + Z2)
3 = 0

Z3 = 0 .
(D.2)

Alternatively, this can be written in affine coordinates zi as

C =
{

[z1, z2, 0, 1] | z1z2 + (z1 + z2)
3 = 0

}

∪ {[1,−1, 0, 0]} . (D.3)

In what follows, we will typically consider the affine patch [z1, z2, z3, 1] of P
3 since this

contains all of C except for a single “point at infinity”. As clear from (D.3), C exhibits a

singular point at [0, 0, 0, 1] which is of the form z1z2 = z3 = 0.

The first step in constructing our three-fold is to blow up along C to obtain the three-

fold Y with the blow-down map

ψ : Y → Z . (D.4)

In coordinates this can be described by considering C
3 × P

1 in the Z4 = 1 patch with

homogeneous coordinates [V0, V1] on the new P
1, which we shall hereafter denote by P

1
V .

The blow-up is then defined in this patch by the equation

Y : V0

(

z1z2 + (z1 + z2)
3
)

= V1z3 . (D.5)
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From (D.5), we see that the resulting three-fold exhibits a singular point at

{(z1, z2, z3), [V0, V1]} = {(0, 0, 0), [1, 0]}. Let us pass to an affine patch covering the north

pole v0 6= 0 of P
1
V . Then defining again u = v1/v0 the equation (D.5) in fact becomes

[z1z2 + (z1 + z2)
3] = uz3 , (D.6)

so that near the singular point it behaves like

z1z2 = uz3 . (D.7)

We recognize this as a conifold singularity.

The divisor classes in Y are the exceptional divisor Q, which is a P
1-bundle over C,

and ψ∗(H) = Q+ (H −Q). The canonical class is

KY = ψ∗(KZ) +Q = −4H +Q . (D.8)

The final step is to blow-up the conifold singularity in Y by

φ : X → Y . (D.9)

To do this, we move to a local patch covering the north pole of P
1
V with coordinates

(z1, z2, z3, u = v1/v0). Let us blow up the origin of this C
4 by gluing in a P

3
W with homoge-

neous coordinates [W1,W2,W3,W4] and restrict to z1z2 = z3u and its smooth continuation,

W1W2 = W3W4, at the origin. In the end, the three-fold takes the following form in this

local patch

X1 =
{

(z1, z2, z3, v1;W1,W2,W3,W4) ∈ C
4 × P

3
W :

(z1, z2, z3, u) ∈ [W1,W2,W3,W4] , z1z2 = z3u , W1W2 = W3W4} .
(D.10)

We can identify the two P
1’s with the submanifolds

P
1
(1) : W2 = W4 = 0 , P

1
(2) : W2 = W3 = 0 . (D.11)

Note that in this local patch it is not possible to see that these P
1s are in the same class

in X. It is however clear from the global topology of X since their intersections with all

divisors are equivalent. The canonical class of X is

KX = −4H + (D + E) +E , (D.12)

where the exceptional divisor is

φ∗Q = D + E . (D.13)

The curve G is a (−1,−1) curve because it is an exceptional P
1 so that we can flop it

to obtain a new three-fold, X̃, depicted in figure 3. The divisors D and E of X carry over

to new divisors D′ ad E′ in X̃ . The canonical class also follows simply from KX as

KX̃ = −4H +D′ + 2E′ . (D.14)

The resulting three-fold X̃ has the desired property that the two curves ℓ−G′ are distinct

in H2(E
′,Z) but are nonetheless equivalent in H2(X̃,Z) so that they satisfy the condition

for existence of a suitable hypercharge flux.
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G

D

H−D−E

E
l l

C

Z

H

Q

H−Q

Y X

Figure 2. Global Construction of Threefold: blowups.

G

D

l−Gl−G

l l

H−D−E

E

Figure 3. Final three-fold X̃

D.1.1 Topology of X

Let us first summarize the topology of X. As a basis of H2(X,Z), we take the curve ℓ0,

which descends from the unique generator of H2(P
3,Z), as well as the curves ℓ and G

depicted in figure 2. A useful basis of divisors is H, E and H −D − E. Their topology is

H ∼= dP3

E ∼= P
1 × P

1

H −D − E ∼= P
2 .

(D.15)

The intersection numbers with various divisors are given by the following table

H D E

ℓ0 +1 0 0

ℓ 0 +1 −1

G 0 −2 1
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The intersections of divisors with one another is furthermore

H E D

H ℓ0 0 3(ℓ+G)

E 0 −2ℓ 2ℓ

D 3(ℓ+G) 2ℓ −3ℓ0 + 12(ℓ +G) − 2ℓ

H −D − E ℓ0 − 3(ℓ+G) 0 3 (ℓ0 − 3(ℓ+G))

(D.16)

from which the following non-vanishing triple-intersections follow

H3 = 1

D3 = −14

E3 = 2

D2H = −3

D2E = 2

E2D = −2 .

(D.17)

Let us further recall the basis of holomorphic sections for X:

Holomorphic section Divisor class

Z4 H

Z1,2 (H − E) + E = H

Z3 (H −D − E) + (D + E) = H

W1,2,3 H −E

W4 3H −D − 2E

V1 (3H −D − 2E) +E = 3H −D −E

V0 H −D − E

(D.18)

Note that for SGUT = X we find t = −c1(NSGUT) = −E2|E = l1 + l2 where we

use that NSGUT = E and the fact that the class 2l in X restricts to the class l1 + l2 in

E = P
1 × P

1.

D.1.2 Topology of X̃

Let us review the topology of X̃ , including the topology of various divisors and the in-

tersection tables for divisors and curves. We start with a discussion of several interesting

divisor classes. The divisor H, which was a dP3 before the flop, remains a dP3 because

it is unaffected by the flop. From the viewpoint of H − D − E = P
2, however, the flop

corresponds to blowing up a point so that H −D′ −E′ becomes a dP1. Similarly, from the

viewpoint of E = P
1 × P

1, the flop effectively blows up a point so that E′ is simply dP2.

Finally the divisor D′ is the Hirzebruch surface F4.

H ∼= dP3

E′ ∼= dP2

D′ ∼= F4

H −D′ − E′ ∼= dP1 .

(D.19)
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As a basis of H2(X̃,Z), we take the curves ℓ0 and ℓ along with the flopped curve G′

as depicted in figure 3. The intersection numbers of these curves with various divisors are

presented in the following table

H E′ H −D′ − E′ D′

ℓ0 1 0 +1 0

ℓ 0 −1 0 1

G′ 0 −1 −1 2

ℓ−G′ 0 0 +1 −1

The intersections of the divisors with one another are as follows

H E′ H −D′ − E′

H ℓ0 0 ℓ0 − 3l + 3G′

E′ 0 −2ℓ+G′ G′

H −D′ − E′ ℓ0 − 3ℓ+ 3G′ G′ −2ℓ0 + 6ℓ− 5G′

D′ 3ℓ− 3G′ 2ℓ− 2G′ 3ℓ0 − 9ℓ+ 7G′

It is useful to distinguish the two P
1’s of E′ that are equivalent to ℓ inside X̃. Denoting

these by ℓ1 and ℓ2, we find that

E′2 = G′ − ℓ1 − ℓ2 , D′.E′ = (ℓ1 −G′) + (ℓ2 −G′) . (D.20)

The non-vanishing triple intersection numbers are easily computed from the above

data with the following results
H3 = 1

E′ 3 = 1

D′ 3 = −6

D′ 2H = −3

D′ 2E′ = −2 .

(D.21)

In the previous section we listed various divisors and their corresponding holomorphic

sections on X. Each of these carries over to a divisor or section after the flop. We will

abuse notation in what follows and continue to use the labels Zi,Wj , Vk of (D.18) for the

corresponding holomorphic sections on X̃.

We use the standard basis for SGUT = dP2 consisting of the hyperplane class, h, and

the two exceptional curves, e1 and e2

H2(E
′,Z) = 〈h, e1, e2〉 . (D.22)

From the intersection form

h2 = 1 , ei · ej = −δij , (D.23)

it is easy to obtain the relation of these classes to ℓ1, ℓ2, and G′,

ℓ1 = h− e1

ℓ2 = h− e2

G′ = h− e1 − e2 .

(D.24)
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Finally note that t = −c1(NSGUT) = −E′2|E′ = h where we use that NSGUT = E′

and the fact that the class 2l −G′ in X̃ restricts to the class h in E′ = dP2.

E Incomplete GUT multiplets and MSSM β functions

In this appendix, we study corrections to the MSSM β functions that arise from incomplete

GUT multiplets engineered on 10 and 5 matter curves threaded by nontrivial hypercharge

flux. As discussed in section 3.4.2, internal hypercharge flux splits the gauge couplings

at the GUT scale, α−1
i (MGUT), replacing the condition of complete unification with the

weaker one [17]

α−1
1 (MGUT) −

3

5
α−1

2 (MGUT) −
2

5
α−1

3 (MGUT) = 0 . (E.1)

Matter fields that comprise incomplete GUT multiplets will disrupt unification in a manner

consistent with this provided their contributions, δbi, to the MSSM β function coefficients,

bi, satisfy

δb1 −
3

5
δb2 −

2

5
δb3 = 0 . (E.2)

In this appendix, we verify that this condition is satisfied for any incomplete GUT multi-

plets that are engineered on 10 or 5 matter curves threaded by nontrivial hypercharge flux.

E.1 β functions

First, let us review some elementary aspects regarding β functions in the MSSM. The

coefficients bi enter into the RG running via

dαi

dt
= −

bi
2π
α2

i , (E.3)

where we use the normalizations of [17]. For SU(N) gauge theories with fundamental

matter, one has

bN =
11

3
N −

1

3
nf −

1

6
ns , (E.4)

where nf is the number of left-handed fermions (counting right-handed fermions as left-

handed antiparticles) and ns is the number of complex scalars that couple to gauge bosons.

In a theory with N = 1 supersymmetry, there will be gauginos that contribute −2
3N

to the running so that the net contribution from gauge degrees of freedom is the usual
11
3 N − 2

3N = 3N . On the other hand, fundamental matter comes from chiral superfields,

each of which contains one complex scalar degree of freedom and one left-handed fermion.

As a result, we get the usual formula

bN = 3N −
Nf

2
, (E.5)

where Nf is the number of chiral superfields in the fundamental of SU(N). For U(1)Y ,

there is no contribution from gauge bosons or gauginos. The contribution from fermions

of charge Yf and scalars of charge Ys is given by

−
2

3

∑

f

Y 2
f −

1

3

∑

s

Y 2
s , (E.6)
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so that for a single chiral superfield we get the contribution −2
3Y

2 − 1
3Y

2 = −Y 2. Note,

however, that the correctly normalized U(1)Y generator has in addition a factor of
√

3
5 .

This means that the β function coefficient for hypercharge is given by

b1 = −
3

5

∑

flavors

Y 2 . (E.7)

It is now easy to verify that the matter content of the MSSM gives rise to the usual β

function coefficients

b3 = 3 , b2 = −1 , b1 = −
33

5
. (E.8)

E.2 Spectrum on matter curves with nontrivial U(1)Y Flux

Let us now consider how the spectrum on a matter curve with nontrivial U(1)Y flux affects

the β function coefficients.

E.2.1 5 matter curves

We begin with a 5 matter curve, Σ5, which houses two types of SU(3) × SU(2) × U(1)Y
multiplet (and their conjugates), namely

(3,1)−1/3 ⊕ (1,2)1/2 . (E.9)

In the presence of a bulk flux that engineers M complete 5 multiplets and N units of

hypercharge flux,10 the net chiralities of these types of multiplets are given by

n(3,1)
−1/3

− n(3,1)+1/3
= M

n(1,2)+1/2
− n(1,2)

−1/2
= M +N .

(E.10)

The shift of β function coefficients induced by the extra (3,1)−1/3’s and (1,2)+1/2’s is

given by

δb3 = −
M

2

δb2 = −
M +N

2

δb1 = −
1

10
(5M + 3N) .

(E.11)

Quite nicely, these satisfy (E.2) because

δb1 −
3

5
δb2 −

2

5
δb3 = 0 . (E.12)

This result was already obtained in [17], where it was observed that massive fields with the

SU(5) quantum numbers of Higgs triplets, which can be engineered by themselves on a 5

matter curve with suitable fluxes, can split the gauge couplings at MGUT while retaining

the condition (E.1).

10By hypercharge flux, we mean here the bundle L
5/6
Y in [5] that is conventionally taken to be O(e1 − e2)

where e1, e2 are exceptional classes of the underlying dPn surface.
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E.2.2 10 matter curves

We turn now to a 10 matter curve, Σ10, which houses three types of SU(3)×SU(2)×U(1)Y
multiplets (and their conjugates), namely

(3,2)+1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1 . (E.13)

Here, combining a bulk flux that normally engineers M complete 10’s with N units of

hypercharge flux leads to the following net chiralities in the spectrum

n(3,2)+1/6
− n(3,2)

−1/6
= M

n(3,1)
−2/3

− n(3,1)+2/3
= M −N

n(1,1)1 − n(1,1)−1
= M +N .

(E.14)

In this case, the shift of the β coefficients induced by the extra (3,2)+1/6’s, (3,1)−2/3’s,

and (1,1)+1’s is given by

δb3 = −
1

2
(3M −N)

δb2 = −
3

2
M

δb1 = −
1

10
(15M − 2N) .

(E.15)

Quite nicely, these also satisfy (E.2) because

δb1 −
3

5
δb2 −

2

5
δb3 = 0 . (E.16)
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